43 resultados para Reactive planning
Resumo:
The potential introduction of third party planning appeals in the UK as a result of the Human Rights Act 1998 has increased interest in those countries that have established third party appeal procedures. The closest of these is the Republic of Ireland, which has had a third party right of appeal since 1963. This paper describes the impact these appeals have had on planning in the Irish Republic by explaining the appeal process, describing past trends and providing background information on the parties that engage in third party appeals. An overall assessment of the Republic’s experience is given and the paper concludes with a few comparative remarks relating this to planning and rights discourse in the UK
Resumo:
Abstract To achieve higher flexibility and to better satisfy actual customer requirements, there is an increasing tendency to develop and deliver software in an incremental fashion. In adopting this process, requirements are delivered in releases and so a decision has to be made on which requirements should be delivered in which release. Three main considerations that need to be taken account of are the technical precedences inherent in the requirements, the typically conflicting priorities as determined by the representative stakeholders, as well as the balance between required and available effort. The technical precedence constraints relate to situations where one requirement cannot be implemented until another is completed or where one requirement is implemented in the same increment as another one. Stakeholder preferences may be based on the perceived value or urgency of delivered requirements to the different stakeholders involved. The technical priorities and individual stakeholder priorities may be in conflict and difficult to reconcile. This paper provides (i) a method for optimally allocating requirements to increments; (ii) a means of assessing and optimizing the degree to which the ordering conflicts with stakeholder priorities within technical precedence constraints; (iii) a means of balancing required and available resources for all increments; and (iv) an overall method called EVOLVE aimed at the continuous planning of incremental software development. The optimization method used is iterative and essentially based on a genetic algorithm. A set of the most promising candidate solutions is generated to support the final decision. The paper evaluates the proposed approach using a sample project.
Resumo:
Aims: To investigate the distribution of a polymicrobial community of biodegradative bacteria in (i) soil and groundwater at a former manufactured gas plant (FMGP) site and (ii) in a novel SEquential REactive BARrier (SEREBAR) bioremediation process designed to bioremediate the contaminated groundwater. Methods and Results: Culture-dependent and culture-independent analyses using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR) for the detection of 16S ribosomal RNA gene and naphthalene dioxygenase (NDO) genes of free-living (planktonic groundwater) and attached (soil biofilm) samples from across the site and from the SEREBAR process was applied. Naphthalene arising from groundwater was effectively degraded early in the process and the microbiological analysis indicated a dominant role for Pseudomonas and Comamonas in its degradation. The microbial communities appeared highly complex and diverse across both the sites and in the SEREBAR process. An increased population of naphthalene degraders was associated with naphthalene removal. Conclusion: The distribution of micro-organisms in general and naphthalene degraders across the site was highly heterogeneous. Comparisons made between areas contaminated with polycyclic aromatic hydrocarbons (PAH) and those not contaminated, revealed differences in the microbial community profile. The likelihood of noncultured bacteria being dominant in mediating naphthalene removal was evident. Significance and Impact of the Study: This work further emphasizes the importance of both traditional and molecular-based tools in determining the microbial ecology of contaminated sites and highlights the role of noncultured bacteria in the process.