94 resultados para Rare plants
Resumo:
Water-soluble, stable, and easily synthesizable 1:4 complexes of rare-earth ions with 8-hydroxy-5-nitroquinolinate ligands have been prepared. These complexes can be sensitized by visible light with wavelengths up to 480 nm and show near-infrared emission in aqueous solution. The incorporation of a nitro group in the quinoline moiety shifts its absorption bands to longer wavelengths and also increases its molar absorptivity by a factor of 2.5, thereby significantly enhancing its light-harvesting power. The presence of the nitro group also increases the solubility of the resulting complexes, making them water-soluble. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007.
Resumo:
The unique absorption properties of the 9-hydroxyphenalen-1-one (HPHN) ligand have been exploited to obtain visible-light-sensitizable rare-earth complexes in 1: 3 and 1: 4 metal-to-ligand ratios. In both stoichiometries (1:3,tris,Ln(PHN)3;1:4, tetrakis, A[ Ln( PHN)(4)], with Ln being a trivalent rare-earth ion and A being a monovalent cation), the complexes of Nd(III),Er( III), and Yb(III) show typical near-infrared luminescence upon excitation with visible light with wavelengths up to 475 nm. The X-ray crystal structures of the tris complexes show solvent coordination to the central rare-earth ion, whereas in the tetrakis complexes, the four PHN-ligands form a protective shield around the central ion, preventing small solvent molecules from coordinating to the rare-earth ion, at least in the solid state.
Resumo:
Near-infrared-emitting rare-earth chelates based on 8-hydroxyquinoline have appeared frequently in recent literature, because they are promising candidates for active components in near-infrared-luminescent optical devices, such as optical amplifiers, organic light-emitting diodes, .... Unfortunately, the absence of a full structural investigation of these rare-earth quinolinates is hampering the further development of rare-earth quinolinate based materials, because the luminescence output cannot be related to the structural properties. After an elaborate structural elucidation of the rare-earth quinolinate chemistry we can conclude that basically three types of structures can be formed, depending on the reaction conditions: tris complexes, corresponding to a 1:3 metal-to-ligand ratio, tetrakis complexes, corresponding to a 1:4 metal-to-ligand ratio, and trimeric complexes, with a 3:8 metal-to-ligand ratio. The intensity of the emitted near-infrared luminescence of the erbium(Ill) complexes is highest for the tetrakis complexes of the dihalogenated 8-hydroxyquinolinates.
Resumo:
Public support for private R&D and innovation is part of most national and regional innovation support regimes. In this article, we estimate the effect of public innovation support on innovation outputs in Ireland and Northern Ireland. Three dimensions of output additionality are considered: extensive additionality, in which public support encourages a larger proportion of the population of firms to innovate; improved product additionality, in which there is an increase in the average importance of incremental innovation; new product additionality, in which there is an increase in the average importance of more radical innovation. Using an instrumental variable approach, our results are generally positive, with public support for innovation having positive, and generally significant, extensive, improved and new product additionality effects. These results hold both for all plants and indigenously owned plants, a specific target of policy in both jurisdictions. The suggestion is that grant aid to firms can be effective in both encouraging firms to initiate new innovation and improve the quality and sophistication of their innovation activity. Our results also emphasize the importance for innovation of in-house R&D, supply-chain linkages, skill levels and capital investment, all of which may be the focus of complementary policy initiatives.
Resumo:
Allozyme analyses have suggested that Neotropical orchid bee (Euglossini) pollinators are vulnerable because of putative high frequencies of diploid males, a result of loss of sex allele diversity in small hymenopteran populations with single locus complementary sex determination. Our analysis of 1010 males from 27 species of euglossine bees sampled across the Neotropics at 2-11 polymorphic microsatellite loci revealed only 5 diploid males at an overall frequency of 0.005 (95% CIs 0.002-0.010); errors through genetic non-detection of diploid males were likely small. In contrast to allozyme-based studies, we detected very weak or insignificant population genetic structure, even for a pair of populations >500 km apart, possibly accounting for low diploid male frequencies. Technical flaws in previous allozyme-based analyses have probably led to considerable overestimation of diploid male production in orchid bees. Other factors may have a more immediate impact on population persistence than the genetic load imposed by diploid males on these important Neotropical pollinators.
Resumo:
Globally there is concern over the decline of bees, an ecologically important group of pollinating insects. Genetic studies provide insights into population structure that are crucial for conservation management but that would be impossible to obtain by conventional ecological methods. Yet conservation genetic studies of bees have primarily focussed on social species rather than the more species-rich solitary bees. Here we investigate the population structure of Colletes floralis, a rare and threatened solitary mining bee, in Ireland and Scotland using nine microsatellite loci. Genetic diversity was surprisingly as high in Scottish (Hebridean island) populations at the extreme northwestern edge of the species range as in mainland Irish populations further south. Extremely high genetic differentiation among populations was detected; multilocus FST was up to 0.53, and G’ST and Dest were even higher (maximum: 0.85 and 1.00 respectively). A pattern of isolation by distance was evident for sites separated by land. Water appears to act as a substantial barrier to gene flow yet sites separated by sea did not exhibit isolation by distance. Colletes floralis populations are extremely isolated and probably not in regional migration-drift equilibrium. GIS-based landscape genetic analysis reveals urban areas as a potential and substantial barrier to gene flow. Our results highlight the need for urgent site-specific management action to halt the decline of this and potentially other rare solitary bees.
Resumo:
A freshly dead bigeye tuna Thunnus obesus was washed ashore near Burry Port, Wales (51 degrees 40' N; 4 degrees 15' W) in August, 2006. This is only the third occasion that the species has been observed in British waters, and is the largest and most northerly recorded specimen.