37 resultados para Raphael, 1483-1520
Resumo:
Purpose: Systemic exposure to parabens in the neonatal population, in particular propyl-parabens (PPB), remains a concern. Blood concentrations and kinetics of methyl-parabens (MPB) and PPB were therefore determined in neonates receiving medicines containing these excipients.
Methods: A multi-centre, non-interventional, observational study of excipient-kinetics in neonates. ‘Dried Blood Spot’ samples were collected opportunistically at the same time as routine samples and the observations modelled using a non-linear mixed effects approach.
Results: A total of 841 blood MPB and PPB concentration data were available for evaluation from 181 pre- and term-neonates. Quantifiable blood concentrations of MPB and PPB were observed in 99% and 49% of patients, and 55% and 25% of all concentrations were above limit of detection (10 ng/ml), respectively. Only MPB data was amenable to modelling. Oral bioavailability was influenced by type of formulation and disposition was best described by a two compartment model with clearance (CL) influenced by post natal age (PNA); CLPNA<21 days 0.57 versus CLPNA>21days 0.88 L/h.
Conclusions: Daily repeated administration of parabens containing medicines can result in prolonged systemic exposure to the parent compound in neonates. Animal toxicology studies of PPB that specifically address the neonatal period are required before a permitted daily exposure for this age group can be established.
Resumo:
The collection of the data for this volume formed part of the work of the European Science Foundation project on Writing National Histories. I was a member of the Research Team (1) which produced the volume. I also wrote two contributions for the Atlas. I collected the data and wrote the section on academic historians in Ireland. I also wrote a synthesis of the data on academic women historians in Europe, 1815-2005.
Resumo:
The blue supergiant Sher 25 is surrounded by an asymmetric, hourglass-shaped circumstellar nebula, which shows similarities to the triple-ring structure seen around SN 1987A. From optical spectroscopy over six consecutive nights, we detect periodic radial velocity variations in the stellar spectrum of Sher 25 with a peak-to-peak amplitude of ~ 12 km s-1 on a time-scale of about 6 d, confirming the tentative detection of similar variations by Hendry et al. From consideration of the amplitude and time-scale of the signal, coupled with observed line profile variations, we propose that the physical origin of these variations is related to pulsations in the stellar atmosphere, rejecting the previous hypothesis of a massive, short-period binary companion. The radial velocities of two other blue supergiants with similar bipolar nebulae, SBW1 and HD 168625, were also monitored over the course of six nights, but these did not display any significant radial velocity variations.
Resumo:
Electron-impact ionization cross sections are calculated for the ground and metastable states of C+. Com- parisons between perturbative distorted-wave and nonperturbative time-dependent close-coupling calculations find reductions in the peak direct ionization cross sections due to electron coupling effects of approximately 5% for ground state C+ and approximately 15% for metastable state C+. Fairly small excitation-autoionization contributions are found for ground state C+, while larger excitation-autoionization contributions are found for metastable state C+. Comparisons between perturbative distorted-wave and nonperturbative R-matrix with pseudostates calculations find reductions in the peak total ionization cross sections due to electron coupling effects of approximately 15–20 % for ground state C+ and approximately 25–35 % for metastable state C+. Finally, comparisons between theory and experiment find that present and previous C+ crossed-beam measure- ments are in excellent agreement with ground state nonperturbative R-matrix with pseudostates calculations for total ionization cross sections. Combined with previous non-perturbative calculations for C, C2+, and C3+, accurate ionization cross sections and rate coefficients are now available for the ground and metastable states of all carbon ion stages.