137 resultados para Radio in aeronautics.
Resumo:
We investigate the acceleration of particles by Alfven waves via the second-order Fermi process in the lobes of giant radio galaxies. Such sites are candidates for the accelerators of ultra-high-energy cosmic rays (UHECR). We focus on the nearby Fanaroff-Riley type I radio galaxy Centaurus A. This is motivated by the coincidence of its position with the arrival direction of several of the highest energy Auger events. The conditions necessary for consistency with the acceleration time-scales predicted by quasi-linear theory are reviewed. Test particle calculations are performed in fields which guarantee electric fields with no component parallel to the local magnetic field. The results of quasi-linear theory are, to an order of magnitude, found to be accurate at low turbulence levels for non-relativistic Alfven waves and at both low and high turbulence levels in the mildly relativistic case. We conclude that for pure stochastic acceleration via Alfven waves to be plausible as the generator of UHECR in Cen A, the baryon number density would need to be several orders of magnitude below currently held upper limits.
Resumo:
The requirement to provide multimedia services with QoS support in mobile networks has led to standardization and deployment of high speed data access technologies such as the High Speed Downlink Packet Access (HSDPA) system. HSDPA improves downlink packet data and multimedia services support in WCDMA-based cellular networks. As is the trend in emerging wireless access technologies, HSDPA supports end-user multi-class sessions comprising parallel flows with diverse Quality of Service (QoS) requirements, such as real-time (RT) voice or video streaming concurrent with non real-time (NRT) data service being transmitted to the same user, with differentiated queuing at the radio link interface. Hence, in this paper we present and evaluate novel radio link buffer management schemes for QoS control of multimedia traffic comprising concurrent RT and NRT flows in the same HSDPA end-user session. The new buffer management schemes—Enhanced Time Space Priority (E-TSP) and Dynamic Time Space Priority (D-TSP)—are designed to improve radio link and network resource utilization as well as optimize end-to-end QoS performance of both RT and NRT flows in the end-user session. Both schemes are based on a Time-Space Priority (TSP) queuing system, which provides joint delay and loss differentiation between the flows by queuing (partially) loss tolerant RT flow packets for higher transmission priority but with restricted access to the buffer space, whilst allowing unlimited access to the buffer space for delay-tolerant NRT flow but with queuing for lower transmission priority. Experiments by means of extensive system-level HSDPA simulations demonstrates that with the proposed TSP-based radio link buffer management schemes, significant end-to-end QoS performance gains accrue to end-user traffic with simultaneous RT and NRT flows, in addition to improved resource utilization in the radio access network.
Resumo:
We present optical and near-infrared (NIR) photometry and NIR spectroscopy of SN 2004am, the only optically detected supernova (SN) in M82. These demonstrate that SN 2004am was a highly reddened Type II-P SN similar to the low-luminosity Type II-P events such as SNe 1997D and 2005cs. We show that SN 2004am was located coincident with the obscured super star cluster M82-L, and from the cluster age infer a progenitor mass of 12{^{+ 7}_{- 3}} M⊙. In addition to this, we present a high spatial resolution Gemini-North Telescope K-band adaptive optics image of the site of SN 2008iz and a second transient of uncertain nature, both detected so far only at radio wavelengths. Using image subtraction techniques together with archival data from the Hubble Space Telescope, we are able to recover a NIR transient source coincident with both objects. We find the likely extinction towards SN 2008iz to be not more than AV ˜ 10. The nature of the second transient remains elusive and we regard an extremely bright microquasar in M82 as the most plausible scenario.
Resumo:
The electron dynamics in a planar coil inductively coupled plasma (ICP) system with a capacitively biased electrode is investigated using space and phase resolved optical emission spectroscopy. The two power source frequencies are exact multiple of each other and phase-locked. In this configuration, the system is investigated when the coil is operated in both E-mode and H-mode. The results show that in a phase synchronized RF biased ICP, the electrode bias power couples with the capacitive contribution of the coil, in both E-mode and H-modes, similar to dual-frequency capacitively coupled plasmas (2f-CCPs). It is also demonstrated that in H-mode, the phase between the electrode bias frequency and the ICP coil frequency influences the electron heating, similar to the electrical asymmetry effect in 2f-CCPs.
Resumo:
In this paper, we consider the secure beamforming design for an underlay cognitive radio multiple-input singleoutput broadcast channel in the presence of multiple passive eavesdroppers. Our goal is to design a jamming noise (JN) transmit strategy to maximize the secrecy rate of the secondary system. By utilizing the zero-forcing method to eliminate the interference caused by JN to the secondary user, we study the joint optimization of the information and JN beamforming for secrecy rate maximization of the secondary system while satisfying all the interference power constraints at the primary users, as well as the per-antenna power constraint at the secondary transmitter. For an optimal beamforming design, the original problem is a nonconvex program, which can be reformulated as a convex program by applying the rank relaxation method. To this end, we prove that the rank relaxation is tight and propose a barrier interior-point method to solve the resulting saddle point problem based on a duality result. To find the global optimal solution, we transform the considered problem into an unconstrained optimization problem. We then employ Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to solve the resulting unconstrained problem which helps reduce the complexity significantly, compared to conventional methods. Simulation results show the fast convergence of the proposed algorithm and substantial performance improvements over existing approaches.
Resumo:
We present wide-field neutral hydrogen (H I) Lovell telescope multibeam, and Dominion Radio Astrophysical Observatory Hi synthesis observations, of the high velocity cloud (HVC) located in the general direction of the globular cluster M92. This cloud is part of the larger Complex C and lies at velocities between similar to -80 and -130 km s(-1) in the Local Standard of Rest. The Lovell telescope observations, of resolution 12 arcmin spatially and 3.0 km s(-1) in velocity, fully sampling a 3.1 degrees x 12.6 degrees RA-Dec grid, have found that this part of HVC Complex C comprises two main condensations, lying approximately north-south in declination, separated by similar to2 degrees and being parallel to the Galactic plane. At this resolution, peak values of the brightness temperature and Hi column density of similar to1.4 K and similar to5 x 10(19) cm(-2) are determined, with relatively high values of the full width half maximum velocity (FWHM) of similar to 22 km s(-1) being observed, equivalent to a gas kinetic temperature, in the absence of turbulence and geometric effects of similar to 10 000 K. Each of these properties, as well as the sizes of the clouds, are similar in the two components. The DRAO observations, towards the Northern HVC condensation, are the first high-resolution Hi spectra of Complex C. When smoothed to a resolution of 3 arcmin, they identify several Hi intensity peaks with column densities in the range 4-7 x 10(19) cm(-2). Further smoothing of these data to 6 arcmin resolution tentatively indicates that parts of the HVC consist of two velocity components, of similar brightness temperature, separated by similar to7 km s(-1) in velocity, and with FWHM velocity widths of similar to5-7 km s(-1). No IRAS 60 or 100 micron flux is associated with the M92 HVC. Cloud properties are briefly discussed and compared to previous observations of HVCs.
Resumo:
The interaction between supernova ejecta and circumstellar matter, arising from previous episodes of mass loss, provides us with a means of constraining the progenitors of supernovae. Radio observations of a number of supernovae show quasi-periodic deviations from a strict power-law decline at late times. Although several possibilities have been put forward to explain these modulations, no single explanation has proven to be entirely satisfactory. Here we suggest that Luminous blue variables undergoing S-Doradus type variations give rise to enhanced phases of mass loss that are imprinted on the immediate environment of the exploding star as a series of density enhancements. The variations in mass loss arise from changes in the ionization balance of Fe, the dominant ion that drives the wind. With this idea, we find that both the recurrence timescale of the variability and the amplitude of the modulations are in line with the observations. Our scenario thus provides a natural, single-star explanation for the observed behaviour that is, in fact, expected on theoretical grounds.
Resumo:
This letter reports the statistical characterization and modeling of the indoor radio channel for a mobile wireless personal area network operating at 868 MHz. Line of sight (LOS) and non-LOS conditions were considered for three environments: anechoic chamber, open office area and hallway. Overall, the Nakagami-m cdf best described fading for bodyworn operation in 60% of all measured channels in anechoic chamber and open office area environments. The Nakagami distribution was also found to provide a good description of Rician distributed channels which predominated in the hallway. Multipath played an important role in channel statistics with the mean recorded m value being reduced from 7.8 in the anechoic chamber to 1.3 in both the open office area and hallway.