92 resultados para RHINOMETRY ACOUSTIC
Resumo:
Theoretical and numerical studies are presented of the amplitude modulation of ion-acoustic waves (IAWs) in a plasma consisting of warm ions, Maxwellian electrons, and a cold electron beam. Perturbations parallel to the carrier IAW propagation direction have been investigated. The existence of four distinct linear ion acoustic modes is shown, each of which possesses a different behavior from the modulational stability point of view. The stability analysis, based on a nonlinear Schrodinger equation (NLSE) reveals that the IAW may become unstable. The stability criteria depend on the IAW carrier wave number, and also on the ion temperature, the beam velocity and the beam electron density. Furthermore, the occurrence of localized envelope structures (solitons) is investigated, from first principles. The numerical analysis shows that the two first modes (essentially IAWs, modified due to the beam) present a complex behavior, essentially characterized by modulational stability for large wavelengths and instability for shorter ones. Dark-type envelope excitations (voids, holes) occur in the former case, while bright-type ones (pulses) appear in the latter. The latter two modes are characterized by an intrinsic instability, as the frequency develops a finite imaginary part for small ionic temperature values. At intermediate temperatures, both bright- and dark-type excitations may exist, although the numerical landscape is intertwined between stability and instability regions.(c) 2006 American Institute of Physics.
Resumo:
The oblique modulational instability of dust acoustic (DA) waves in an unmagnetized warm dusty plasma with nonthermal ions, taking into account dust grain charge variation (charging), is investigated. A nonlinear Schrodinger-type equation governing the slow modulation of the wave amplitude is derived. The effects of dust temperature, dust charge variation, ion deviation from Maxwellian equilibrium (nonthermality) and constituent species' concentration on the modulational instability of DA waves are examined. It is found that these parameters modify significantly the oblique modulational instability domain in the k-theta plane. Explicit expressions for the instability rate and threshold have been obtained in terms of the dispersion laws of the system. The possibility and conditions for the existence of different types of localized excitations are also discussed. The findings of this investigation may be useful in understanding the stable electrostatic wave packet acceleration mechanisms close to the Moon, and also enhances our knowledge on the occurrence of instability associated to pickup ions around unmagnetized bodies, such as comets, Mars, and Venus.
Acoustic solitary waves in dusty and/or multi-ion plasmas with cold, adiabatic, and hot constituents
Resumo:
Large nonlinear acoustic waves are discussed in a four-component plasma, made up of two superhot isothermal species, and two species with lower thermal velocities, being, respectively, adiabatic and cold. First a model is considered in which the isothermal species are electrons and ions, while the cooler species are positive and/or negative dust. Using a Sagdeev pseudopotential formalism, large dust-acoustic structures have been studied in a systematic way, to delimit the compositional parameter space in which they can be found, without restrictions on the charges and masses of the dust species and their charge signs. Solitary waves can only occur for nonlinear structure velocities smaller than the adiabatic dust thermal velocity, leading to a novel dust-acoustic-like mode based on the interplay between the two dust species. If the cold and adiabatic dust are oppositely charged, only solitary waves exist, having the polarity of the cold dust, their parameter range being limited by infinite compression of the cold dust. However, when the charges of the cold and adiabatic species have the same sign, solitary structures are limited for increasing Mach numbers successively by infinite cold dust compression, by encountering the adiabatic dust sonic point, and by the occurrence of double layers. The latter have, for smaller Mach numbers, the same polarity as the charged dust, but switch at the high Mach number end to the opposite polarity. Typical Sagdeev pseudopotentials and solitary wave profiles have been presented. Finally, the analysis has nowhere used the assumption that the dust would be much more massive than the ions and hence, one or both dust species can easily be replaced by positive and/or negative ions and the conclusions will apply to that plasma model equally well. This would cover a number of different scenarios, such as, for example, very hot electrons and ions, together with a mix of adiabatic ions and dust (of either polarity) or a very hot electron-positron mix, together with a two-ion mix or together with adiabatic ions and cold dust (both of either charge sign), to name but some of the possible plasma compositions.
Resumo:
A study is presented of the nonlinear self-modulation of low-frequency electrostatic (dust acoustic) waves propagating in a dusty plasma, in the presence of a superthermal ion (and Maxwellian electron) background. A kappa-type superthermal distribution is assumed for the ion component, accounting for an arbitrary deviation from Maxwellian equilibrium, parametrized via a real parameter kappa. The ordinary Maxwellian-background case is recovered for kappa ->infinity. By employing a multiple scales technique, a nonlinear Schrodinger-type equation (NLSE) is derived for the electric potential wave amplitude. Both dispersion and nonlinearity coefficients of the NLSE are explicit functions of the carrier wavenumber and of relevant physical parameters (background species density and temperature, as well as nonthermality, via kappa). The influence of plasma background superthermality on the growth rate of the modulational instability is discussed. The superthermal feature appears to control the occurrence of modulational instability, since the instability window is strongly modified. Localized wavepackets in the form of either bright-or dark-type envelope solitons, modeling envelope pulses or electric potential holes (voids), respectively, may occur. A parametric investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are affected by superthermality, as well as by relevant plasma parameters (dust concentration, ion temperature).
Resumo:
Velocity distribution functions with an excess of superthermal particles are commonly observed in space plasmas, and are effectively modeled by a kappa distribution. They are also found in some laboratory experiments. In this paper we obtain existence conditions for and some characteristics of ion-acoustic solitary waves in a plasma composed of cold ions and kappa-distributed electrons, where kappa>3/2 represents the spectral index. As is the case for the usual Maxwell-Boltzmann electrons, only positive potential solitons are found, and, as expected, in the limit of large kappa one recovers the usual range of possible soliton Mach numbers, viz., 1 < M < 1.58. For lower values of kappa, modeling the presence of a greater superthermal component, the range of accessible Mach numbers is reduced. It is found that the amplitude of the largest possible solitons that may be generated in a given plasma (corresponding to the highest allowed Mach number for the given plasma composition) falls off with decreasing kappa, i.e., an increasing superthermal component. On the other hand, at fixed Mach number, both soliton amplitude and profile steepness increase as kappa is decreased. These changes are seen to be important particularly for kappa < 4, i.e., when the electrons have a "hard" spectrum.
Resumo:
The amplitude modulation of ion-acoustic waves IS investigated in a plasma consisting of adiabatic warm ions, and two different populations of thermal electrons at different temperatures. The fluid equations are reduced to nonlinear Schrodinger equation by employing a multi-scale perturbation technique. A linear stability analysis for the wave packet amplitude reveals that long wavelengths are always stable, while modulational instability sets in for shorter wavelengths. It is shown that increasing the value of the hot-to-cold electron temperature ratio (mu), for a given value of the hot-to-cold electron density ratio (nu): favors instability. The role of the ion temperature is also discussed. In the limiting case nu = 0 (or nu -> infinity). which correspond(s) to an ordinary (single) electron-ion plasma, the results of previous works are recovered.
Resumo:
Dust ion acoustic solitons in an unmagnetized dusty plasma comprising cold dust particles, adiabatic fluid ions, and electrons satisfying a kappa distribution are investigated using both small amplitude and arbitrary amplitude techniques. Their existence domain is discussed in the parameter space of Mach number M and electron density fraction f over a wide range of values of kappa. For all kappa > 3/2, including the Maxwellian distribution, negative dust supports solitons of both polarities over a range in f. In that region of parameter space solitary structures of finite amplitude can be obtained even at the lowest Mach number, the acoustic speed, for all kappa. These cannot be found from small amplitude theories. This surprising behavior is investigated, and it is shown that f(c), the value of f at which the KdV coefficient A vanishes, plays a critical role. In the presence of positive dust, only positive potential solitons are found. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3400229]
Resumo:
The study of non-Maxwellian plasmas is crucial to the understanding of space and astrophysical plasma dynamics. In this paper, we investigate the existence of arbitrary amplitude ion-acoustic solitary waves in an unmagnetized plasma consisting of ions and excess superthermal electrons (modelled by a kappa-type distribution), which is penetrated by an electron beam. A kappa (kappa-) type distribution is assumed for the background electrons. A (Sagdeev-type) pseudopotential formalism is employed to derive an energy-balance like equation. The range of allowed values of the soliton speed (Mach number), wherein solitary waves may exist, is determined. The Mach number range (allowed soliton speed values) becomes narrower under the combined effect of the electron beam and of the superthermal electrons, and may even be reduced to nil (predicting no solitary wave existence) for high enough beam density and low enough kappa (significant superthermality). For fixed values of all other parameters (Mach number, electron beam-to-ion density ratio and electron beam velocity), both soliton amplitude and (electric potential perturbation) profile steepness increase as kappa decreases. The combined occurrence of small-amplitude negative potential structures and larger amplitude positive ones is pointed out, while the dependence of either type on the plasma parameters is investigated.
Resumo:
Large nonlinear acoustic waves are discussed in a plasma made up of cold supersonic and adiabatic subsonic positive ions, in the presence of hot isothermal electrons, with the help of Sagdeev pseudopotential theory. In this model, no solitons are found at the acoustic speed, and no compositional parameter ranges exist where solutions of opposite polarities can coexist. All nonlinear modes are thus super-acoustic, but polarity changes are possible. The upper limits on admissible structure velocities come from different physical arguments, in a strict order when the fractional cool ion density is increased: infinite cold ion compression, warm ion sonic point, positive double layers, negative double layers, and finally, positive double layers again. However, not all ranges exist for all mass and temperature ratios. Whereas the cold and warm ion sonic point limitations are always present over a wide range of mass and temperature ratios, and thus positive polarity solutions can easily be obtained, double layers have a more restricted existence range, specially if polarity changes are sought. (C) 2011 American Institute of Physics. [doi:10.1063/1.3579397]
Resumo:
The linear and nonlinear properties of large-amplitude electron-acoustic waves are investigated in a magnetized plasma comprising two distinct electron populations (hot and cold) and immobile ions. The hot electrons are assumed to be in a non-Maxwellian state, characterized by an excess of superthermal particles, here modeled by a kappa-type long-tailed distribution function. Waves are assumed to propagate obliquely to the ambient magnetic field. Two types of electrostatic modes are shown to exist in the linear regime, and their properties are briefly analyzed. A nonlinear pseudopotential-type analysis reveals the existence of large-amplitude electrostatic solitary waves and allows for an investigation of their propagation characteristics and existence domain, in terms of the soliton speed (Mach number). The effects of the key plasma configuration parameters, namely the superthermality index and the cold electron density, on the soliton characteristics and existence domain, are studied. The role of obliqueness and magnetic field is discussed.
Resumo:
A series of numerical simulations is presented, based on a recurrence-free Vlasov kinetic model using kinetic phase point trajectories. All plasma components are modeled kinetically via a Vlasov evolution equation, then coupled through Poisson’s equation. The dynamics of ion acoustic waves in an electron-ion and in a dusty (electron-ion-dust) plasma configuration are investigated, focusing on wave decay due to Landau damping and, in particular, on the parametric dependence of the damping rate on the dust concentration and on the electron-to-ion temperature ratio. In the absence of dust, the occurrence of damping was observed, as expected, and its dependence to the relative magnitude of the electron vs ion temperature(s) was investigated. When present, the dust component influences the charge balance, enabling dust-ion acoustic waves to survive Landau damping even in the extreme regime where Te???Ti. The Landau damping rate is shown to be minimized for a strong dust concentration or/and for a high value of the electron-to-ion temperature ratio. Our results confirm earlier theoretical considerations and contribute to the interpretation of experimental observations of dust-ion acoustic wave characteristics.
Resumo:
The nonlinear dynamics of electron-acoustic localized structures in a collisionless and unmagnetized plasma consisting of “cool” inertial electrons, “hot” electrons having a kappa distribution, and stationary ions is studied. The inertialess hot electron distribution thus has a long-tailed suprathermal (non-Maxwellian) form. A dispersion relation is derived for linear electron-acoustic waves. They show a strong dependence of the charge screening mechanism on excess suprathermality (through ?). A nonlinear pseudopotential technique is employed to investigate the occurrence of stationary-profile solitary waves, focusing on how their characteristics depend on the spectral index ?, and the hot-to-cool electron temperature and density ratios. Only negative polarity solitary waves are found to exist, in a parameter region which becomes narrower as deviation from the Maxwellian (suprathermality) increases, while the soliton amplitude at fixed soliton speed increases. However, for a constant value of the true Mach number, the amplitude decreases for decreasing ?.