97 resultados para RFID interface
Resumo:
When simulating the High Pressure Die Casting ‘HPDC’ process, the heat transfer coefficient ‘HTC’ between the casting and the die is critical to accurately predict the quality of the casting. To determine the HTC at the metal–die interface a production die for an automotive engine bearing beam, Die 1, was instrumented with type K thermocouples. A Magmasoft® simulation model was generated with virtual thermocouple points placed in the same location as the production die. The temperature traces from the simulation model were compared to the instrumentation results. Using the default simulation HTC for the metal–die interface, a poor correlation was seen, with the temperature response being much less for the simulation model. Because of this, the HTC at the metal–die interface was modified in order to get a better fit. After many simulation iterations, a good fit was established using a peak HTC of 42,000 W/m2 K, this modified HTC was further validated by a second instrumented production die, proving that the modified HTC gives good correlation to the instrumentation trials. The updated HTC properties for the simulation model will improve the predictive capabilities of the casting simulation software and better predict casting defects.
Resumo:
Cationic dyes, such as methylene blue (MB), Thionine (TH) and Basic Fuschin (BF), but not anionic dyes, such as Acid Orange 7 (AO7), Acid Blue 9 (AB9) and Acid Fuschin (AF), are readily adsorbed onto mesoporous titania films at high pH (pH 11), i.e. well above the pzc of titania (pH 6.5), due to electrostatic forces of attraction and repulsion, respectively. The same anionic dyes, but not the cationic dyes, are readily adsorbed on the same titania films at low pH (pH 3), i.e. well below titania's pzc. MB appears to adsorb on mesoporous titania films at pH 11 as the trimer (lambda(max) = 570 nm) but, upon drying, although the trimer still dominates, there is an absorption peak at 665 nm, especially notable at low [MB], which may be due to the monomer, but more likely MB J-aggregates. In contrast, the absorption spectrum of AO7 adsorbed onto the mesoporous titania film at low pH is very similar to the dye monomer. For both MB and AO7 the kinetics of adsorption are first order and yield high rate constants (3.71 and 1.481 g(-1) min(-1)), indicative of a strong adsorption process. Indeed, both MB and AO7 stained films retained much of their colour when left overnight in dye-free pH 11 and 3 solutions, respectively, indicating the strong nature of the adsorption. The kinetics of the photocatalytic bleaching of the MB-titania films at high pH are complex and not well-described by the Julson-Ollis kinetic model [A.J. Julson, D.F. Ollis, Appl. Catal. B. 65 (2006) 315]. Instead, there appears to be an initial fast but not simple demethylation step, followed by a zero-order bleaching and further demethylation steps. In contrast, the kinetics of photocatalytic bleaching of the AO7-titania film give a good fit to the Julson-Ollis kinetic model, yielding values for the various fitting parameters not too dissimilar to those reported for AO7 adsorbed on P25 titania powder. (C) 2008 Elsevier B.V. All rights reserved.