74 resultados para RENEWABLE ENERGY SOURCES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomass fuels have long been accepted as useful renewable energy sources, especially in mitigating greenhouse gases (GHG), nitrogen oxides, and sulfur oxide emissions. Biomass fuel is carbon neutral and is usually low in both nitrogen and sulfur. For the past decade, various forms of biomass fuels have been co-combusted in existing coal-fired boilers and gas-fired power plants. Biomass is used as a supplemental fuel to substitute for up to 10% of the base fuel in most full commercial operations. There are several successful co-firing projects in many parts of the world, particularly in Europe and North America. However, despite remarkable commercial success in Europe, most of the biomass co-firing in North America is limited to demonstration levels. This review takes a detailed look at several aspects of biomass co-firing with a direct focus on North America. It also explores the benefits, such as the reduction of GHG emissions and its implications. This paper shows the results of our studies of the biomass resources available in North America that can be used in coal-fired boilers, their availability and transportation to the power plant, available co-firing levels and technologies, and various technological and environmental issues associated with biomass co-firing. Finally, the paper proffers solutions to help utility companies explore biomass co-firing as a transitional option towards a completely carbon-free power sector in North America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently wind power is dominated by onshore wind farms. However, as the demand for power grows driven by security of energy supply issues, dwindling fossil fuel supplies and greenhouse gas emissions reduction targets, offshore wind power will develop rapidly because of the decline of viable onshore sites. The United Kingdom has a target of 21% renewable electricity by 2020 and this is expected to come mostly from wind power. Britain is the most active internationally in terms of offshore wind farm development with almost 48GW in some stage of development. In addition the Scottish Government, the Northern Ireland Executive and the Government of Ireland undertook the 'Irish-Scottish Links on Energy Study' (ISLES), which examined the feasibility of creating an offshore interconnected transmission network and subsea electricity grid based on renewable energy sources off the coast of western Scotland and the Irish Sea. The aim of this paper is to provide an appraisal of offshore wind power development with a focus on the United Kingdom. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At least 34 % of the United Kingdom’s power must come from renewable energy sources to meet planned European Union targets in 2030. Wind power will provide the majority of this renewable electricity with an estimated 36 GW offshore and 21 GW onshore. The success of the Crown Estate’s leasing rounds 1 and 2 in offshore wind has meant the United Kingdom is now one of the world leaders in offshore wind power development. Leasing round 3 will see offshore wind in the United Kingdom surpass 36 GW of installed capacity. This is a significant increase from the current installed offshore wind capacity of 3.6 GW. This research investigates the power system performance of offshore wind power in the United Kingdom in 2030.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future power systems are expected to integrate large-scale stochastic and intermittent generation and load due to reduced use of fossil fuel resources, including renewable energy sources (RES) and electric vehicles (EV). Inclusion of such resources poses challenges for the dynamic stability of synchronous transmission and distribution networks, not least in terms of generation where system inertia may not be wholly governed by large-scale generation but displaced by small-scale and localised generation. Energy storage systems (ESS) can limit the impact of dispersed and distributed generation by offering supporting reserve while accommodating large-scale EV connection; the latter (load) also participating in storage provision. In this paper, a local energy storage system (LESS) is proposed. The structure, requirement and optimal sizing of the LESS are discussed. Three operating modes are detailed, including: 1) storage pack management; 2) normal operation; and 3) contingency operation. The proposed LESS scheme is evaluated using simulation studies based on data obtained from the Northern Ireland regional and residential network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilization of renewable energy sources and energy storage systems is increasing with fostering new policies on energy industries. However, the increase of distributed generation hinders the reliability of power systems. In order to stabilize them, a virtual power plant emerges as a novel power grid management system. The VPP has a role to make a participation of different distributed energy resources and energy storage systems. This paper defines core technology of the VPP which are demand response and ancillary service concerning about Korea, America and Europe cases. It also suggests application solutions of the VPP to V2G market for restructuring national power industries in Korea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have shown that large geographical spreading can reduce the wind power variability and smooth production. It is frequently assumed that storage and interconnection can manage wind power variability and are totally flexible. However, constraints do exist. In the future more and more electricity will be provided by renewable energy sources and more electricity interconnectors will be built between European Union (EU) countries, as outlines in many of the Projects of Common Interests. It is essential to understand the correlation of wind generation throughout Europe considering power system constraints. In this study the spatial and temporal correlation of wind power production across several countries is examined in order to understand how “the wind ‘travels’ across Europe”. Three years of historical hourly wind power generation from ten EU countries is analysed to investigate the geographic diversity and time scales influence on correlation of wind power variations. Results are then compared with two other studies and show similar general characteristics of correlation between EU country pairs to identify opportunities for storage optimisation, power system operations, and trading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable energy is generally accepted as an important component of future electricity grids. In late 2008, the Government of the Republic of Ireland set a target of 10% of all vehicles in its transport fleet be powered by electricity by 2020. This paper examines the potential contributions Electric Vehicles (EVs) can make to facilitate increased electricity generation from variable renewable sources such as wind generation in the Republic of Ireland. It also presents an overview of the technical and economic issues associated with this target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EU Directive 2009/28/EC on Renewable Energy requires each Member State to ensure 10% of transport energy (excluding aviation and marine transport) comes from renewable sources by 2020 (10% RES-T target). In addition to the anticipated growth in biofuels, this target is expected to be met by the increased electrification of transport coupled with a growing contribution from renewable energy to electricity generation. Energy use in transport accounted for nearly half of Ireland’s total final energy demand and about a third of energy-related carbon dioxide emissions in 2007. Energy use in transport has grown by 6.3% per annum on average in the period 1990 – 2007. This high share and fast growth relative to other countries highlights the challenges Ireland faces in meeting ambitious renewable energy targets. The Irish Government has set a specific target for Electric Vehicles (EV) as part of its strategy to deliver the 10% RES-T target. By 2020, 10% of all vehicles in its transport fleet are to be powered by electricity. This paper quantifies the impacts on energy and carbon dioxide emissions of this 10% EV target by 2020. In order to do this an ‘EV Car Stock’ model was developed to analyse the historical and future make-up of the passenger car portion of the fleet to 2025. Three scenarios for possible take-up in EVs were examined and the associated energy and emissions impacts are quantified. These impacts are then compared to Ireland’s 10% RES-T target and greenhouse gas (GHG) emissions reduction targets for 2020. Two key findings of the study are that the 10% EV target contributes 1.7% to the 10% RES-T target by 2020 and 1.4% to the 20% reduction in Non-ETS emissions by 2020 relative to 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the benefits of renewable energy are well known and used to influence government policy there are a number of problems which arise from having significant quantities of renewable energies on an electricity grid. The most notable problem stems from their intermittent nature which is often out of phase with the demands of the end users. This requires the development of either efficient energy storage systems, e.g. battery technology, compressed air storage etc. or through the creation of demand side management units which can utilise power quickly for manufacturing operations. Herein a system performing the conversion of synthetic biogas to synthesis gas using wind power and an induction heating system is shown. This approach demonstrates the feasibility of such techniques for stabilising the electricity grid while also providing a robust means of energy storage. This exemplar is also applicable to the production of hydrogen from the steam reforming of natural gas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power system of the future will have a hierarchical structure created by layers of system control from via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the concept of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called ‘back-up generation’ needed to support an 80% renewable energy portfolio in Europe by 2050.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power electronics plays an important role in the control and conversion of modern electric power systems. In particular, to integrate various renewable energies using DC transmissions and to provide more flexible power control in AC systems, significant efforts have been made in the modulation and control of power electronics devices. Pulse width modulation (PWM) is a well developed technology in the conversion between AC and DC power sources, especially for the purpose of harmonics reduction and energy optimization. As a fundamental decoupled control method, vector control with PI controllers has been widely used in power systems. However, significant power loss occurs during the operation of these devices, and the loss is often dissipated in the form of heat, leading to significant maintenance effort. Though much work has been done to improve the power electronics design, little has focused so far on the investigation of the controller design to reduce the controller energy consumption (leading to power loss in power electronics) while maintaining acceptable system performance. This paper aims to bridge the gap and investigates their correlations. It is shown a more thoughtful controller design can achieve better balance between energy consumption in power electronics control and system performance, which potentially leads to significant energy saving for integration of renewable power sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The challenges of a low carbon energy transition have now been recognized by most nation states, each of whom have responded with differing visions, strategies and programmes, with variable veracity and effectiveness. Given the complexity of each country’s energy system (and sub-systems such as mobility, food etc), the differing sources and wealth of indigenous energy resources, the variable legacy of the fossil fuel regime and differing capacity to respond to global shifts in energy markets, it is clear that each country will respond to this challenge in very different ways.
This poses difficulties for understanding the extent to which a transition may be taking hold in any territory as simple indicators such as GHG emission data or increases in renewable energy ignore the complex contexts in which transitions take place. Drawing on the results of a study, funded by the Irish Environmental Protection Agency (Characterizing and Catalyzing Transitions) and using the wider theoretical framework of socio-technological transitions, this paper will explore the challenges, virtues and constraints of attempting to ‘benchmark’ the Republic of Ireland’s transition. This will lead to wider observations on the normative nature of benchmarking and a critical review of how we conceptualize the very idea of transition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Earlier studies have indicated that the gross nearshore wave energy resource is significantly smaller than the gross offshore wave energy resource implying that the deployment of wave energy converters in the nearshore is unlikely to be economic. However, it is argued that the gross wave energy resource is not an appropriate measure for determining the productivity of a wave farm and an alternative measure, the exploitable wave energy resource, is proposed. Calculation of a site's potential using the exploitable wave energy resource is considered superior because it accounts for the directional distribution of the incident waves and the wave energy plant rating that limits the power capture in highly energetic sea-states. A third-generation spectral wave model is used to model the wave transformation from deep water to a nearshore site in a water depth of 10 m. It is shown that energy losses result in a reduction of less than 10% of the net incident wave power. Annual wave data for the North Atlantic coast of Scotland is analysed and indicates that whilst the gross wave energy resource has reduced significantly by the 10 m depth contour, the exploitable wave energy resource is reduced by 7 and 22% for the two sites analysed. This limited reduction in exploitable wave energy resource means that for many exposed coasts, nearshore sites offer similar potential for exploitation of the wave energy resource as offshore sites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polymer based carbon aerogels were prepared by synthesis of a resorcinol formaldehyde gel followed by pyrolysis at 1073K under Ar and activation of the resultant carbon under CO2 at different temperatures. The prepared carbon aerogels were used as active materials in the preparation of cathode electrodes for lithium oxygen cells and the electrochemical performance of the cells was evaluated by galvanostatic charge/discharge cycling and electrochemical impedance measurements. It was shown that the storage capacity and discharge voltage of a Li/O2 cell strongly depend on the porous structure of the carbon used in cathode. EIS results also showed that the shape and value of the resistance in the impedance spectrum of a Li/O2 cell are strongly affected by the porosity of carbon used in the cathode. Porosity changes due to the build up of discharge products hinder the oxygen and lithium ion transfer into the electrode, resulting in a gradual increase in the cell impedance with cycling. The discharge capacity and cycle life of the battery decrease significantly as its internal resistance increases with charge/discharge cycling.