43 resultados para Quantity of product
Resumo:
The biogeochemical cycle of arsenic (As) has been extensively studied over the past decades because As is an environmentally ubiquitous, nonthreshold carcinogen, which is often elevated in drinking water and food. It has been known for over a century that micro-organisms can volatilize inorganic As salts to arsines (arsine AsH(3), mono-, di-, and trimethylarsines, MeAsH(2), Me(2)AsH, and TMAs, respectively), but this part of the As cycle, with the exception of geothermal environs, has been almost entirely neglected because of a lack of suited field measurement approaches. Here, a validated, robust, and low-level field-deployable method employing arsine chemotrapping was used to quantify and qualify arsines emanating from soil surfaces in the field. Up to 240 mg/ha/y arsines was released from low-level polluted paddy soils (11.3 ± 0.9 mg/kg As), primarily as TMAs, whereas arsine flux below method detection limit was measured from a highly contaminated mine spoil (1359 ± 212 mg/kg As), indicating that soil chemistry is vital in understanding this phenomenon. In microcosm studies, we could show that under reducing conditions, induced by organic matter (OM) amendment, a range of soils varied in their properties, from natural upland peats to highly impacted mine-spoils, could all volatilize arsines. Volatilization rates from 0.5 to 70 µg/kg/y were measured, and AsH(3), MeAsH(2), Me(2)AsH, and TMAs were all identified. Addition of methylated oxidated pentavalent As, namely monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA), to soil resulted in elevated yearly rates of volatilization with up to 3.5% of the total As volatilized, suggesting that the initial conversion of inorganic As to MMAA limits the rate of arsine and methylarsines production by soils. The nature of OM amendment altered volatilization quantitatively and qualitatively, and total arsines release from soil showed correlation between the quantity of As and the concentration of dissolved organic carbon (DOC) in the soil porewater. The global flux of arsines emanating from soils was estimated and placed in the context of As atmospheric inputs, with arsines contributing from 0.9 to 2.6% of the global budget.
Resumo:
Arsenic contaminated groundwater is used extensively in Bangladesh to irrigate the staple food of the region, paddy rice (Oryza sativa L.). To determine if this irrigation has led to a buildup of arsenic levels in paddy fields, and the consequences for arsenic exposure through rice ingestion, a survey of arsenic levels in paddy soils and rice grain was undertaken. Survey of paddy soils throughout Bangladesh showed that arsenic levels were elevated in zones where arsenic in groundwater used for irrigation was high, and where these tube-wells have been in operation for the longest period of time. Regression of soil arsenic levels with tube-well age was significant. Arsenic levels reached 46 microg g(-1) dry weight in the most affected zone, compared to levels below l0 microg g(-1) in areas with low levels of arsenic in the groundwater. Arsenic levels in rice grain from an area of Bangladesh with low levels of arsenic in groundwaters and in paddy soils showed that levels were typical of other regions of the world. Modeling determined, even these typical grain arsenic levels contributed considerably to arsenic ingestion when drinking water contained the elevated quantity of 0.1 mg L(-1). Arsenic levels in rice can be further elevated in rice growing on arsenic contaminated soils, potentially greatly increasing arsenic exposure of the Bangladesh population. Rice grain grown in the regions where arsenic is building up in the soil had high arsenic concentrations, with three rice grain samples having levels above 1.7 microg g(-1).
Resumo:
Exposure assessment is a critical part of epidemiological studies into the effect of mycotoxins on human health. Whilst exposure assessment can be made by estimating the quantity of ingested toxins from food analysis and questionnaire data, the use of biological markers (biomarkers) of exposure can provide a more accurate measure of individual level of exposure in reflecting the internal dose. Biomarkers of exposure can include the excreted toxin or its metabolites, as well as the products of interaction between the toxin and macromolecules such as protein and DNA. Samples in which biomarkers may be analysed include urine, blood, other body fluids and tissues, with urine and blood being the most accessible for human studies. Here we describe the development of biomarkers of exposure for the assessment of three important mycotoxins; aflatoxin, fumonisin and deoxynivalenol. A number of different biomarkers and methods have been developed that can be applied to human population studies, and these approaches are reviewed in the context of their application to molecular epidemiology research.
Resumo:
Zeolites exchanged with transition metal cations Co2+, Mn2+, Zn2+ and Cu2+ are capable of storing and delivering a large quantity of nitric oxide in a range of 1.2-2.7 mmolg(-1). The metal ion exchange impacts the pore volumes of zeolite FAU more significantly than LTA. The storage of NO mainly involves coordination of NO to metal cation sites. By exposing zeolites to a moisture atmosphere, the stored nitric oxide can be released. The NO release takes more than 2 hours for the NO concentration decreasing below similar to 5ppb in outlet gas. Its release rate can be controlled by tailoring zeolite frameworks and optimising release conditions.
Resumo:
We describe the rationale for disease specific research networks in general as well as the aims and function of the European Cystic Fibrosis Society-Clinical Trials Network (ECFS-CTN) specifically. The ECFS-CTN was founded in 2009 with the aim of improving the quality and quantity of clinical research in the area of cystic fibrosis (CF) in Europe. A network of 18 clinical trial sites in 8 European countries was established according to uniform state-of-the-art quality criteria. To support the ECFS-CTN in the acquisition, planning and conduct of clinical trials, the network is equipped with a coordinating centre, steering and executive committees, and committees for protocol review, standardization, training and networking as well as a data safety monitoring board. A strong partnership with European CF patient parent organizations aims to increase awareness of the need for efficient clinical research and the participation of patients in clinical trials.
Resumo:
To compare the rejection rates of non-small cell lung cancer (NSCLC) samples obtained by differing sampling methods for testing by Sanger sequencing for epidermal growth factor receptor (EGFR) mutations. To assess the association between unsatisfactory outcomes and the quantity of DNA extracted from cytological versus histological samples.
Resumo:
The performance of NOx storage and reduction over 1.5 wt% Pt/20 wt% KNO3/K2Ti8O17 and 1.5 wt% Pt/K2Ti8O17 catalysts has been investigated using combined fast transient kinetic switching and isotopically labelled (NO)-N-15 at 350 degrees C. The evolution of product N-2 has revealed two significant peaks during 60 s lean/1.3 s rich switches. It also found that the presence of CO2 in the feed affects the release of N-2 in the second peak. Regardless of the presence/absence of water in the feed, only one peak of N-2 was observed in the absence of CO2. Gas-phase NH3 was not observed in any of the experiments. However, in the presence of CO2 the results obtained from in situ DRIFTS-MS analysis showed that isocyanate species are formed and stored during the rich cycles, probably from the reaction between NOx and CO, in which CO was formed via the reverse water-gas shift reaction.
Resumo:
Bioresorbable polymers such as PLA have an important role to play in the development of temporary implantable medical devices with significant benefits over traditional therapies. However, development of new devices is hindered by high manufacturing costs associated with difficulties in processing the material. A major problem is the lack of insight on material degradation during processing. In this work, a method of quantifying degradation of PLA using IR spectroscopy coupled with computational chemistry and chemometric modeling is examined. It is shown that the method can predict the quantity of degradation products in solid-state samples with reasonably good accuracy, indicating the potential to adapt the method to developing an on-line sensor for monitoring PLA degradation in real-time during processing.
Resumo:
Arsenic (As) is ubiquitous in the environment in the carcinogenic inorganic forms, posing risks to human health in many parts of the world. Many microorganisms have evolved a series of mechanisms to cope with inorganic arsenic in their growth media such as transforming As compounds into volatile derivatives. Bio-volatilization of As has been suggested to play an important role in global As biogeochemical cycling, and can also be explored as a potential method for arsenic bioremediation. This review aims to provide an overview of the quality and quantity of As volatilization by fungi, bacteria, microalga and protozoans. Arsenic bio-volatilization is influenced by both biotic and abiotic factors that can be manipulated/elucidated for the purpose of As bioremediation. Since As bio-volatilization is a resurgent topic for both biogeochemistry and environmental health, our review serves as a concept paper for future research directions.
Resumo:
Goats’ milk is responsible for unique traditional products such as Halloumi cheese. The characteristics of Halloumi depend on the original features of the milk and on the conditions under which the milk has been produced such as feeding regime of the animals or region of production. Using a range of milk (33) and Halloumi (33) samples collected over a year from three different locations in Cyprus (A, Anogyra; K, Kofinou; P, Paphos), the potential for fingerprint VOC analysis as marker to authenticate Halloumi was investigated. This unique set up consists of an in-injector thermo desorption (VOCtrap needle) and a chromatofocusing system based on mass spectrometry (VOCscanner). The mass spectra of all the analyzed samples are treated by multivariate analysis (Principle component analysis and Discriminant functions analysis). Results showed that the highland area of product (P) is clearly identified in milks produced (discriminant score 67%). It is interesting to note that the higher similitude found on milks from regions “A” and “K” (with P being distractive; discriminant score 80%) are not ‘carried over’ on the cheeses (higher similitude between regions “A” and “P”, with “K” distinctive). Data have been broken down into three seasons. Similarly, the seasonality differences observed in different milks are not necessarily reported on the produced cheeses. This is expected due to the different VOC signatures developed in cheeses as part of the numerous biochemical changes during its elaboration compared to milk. VOC however it is an additional analytical tool that can aid in the identification of region origin in dairy products.
Resumo:
Viscosity represents a key indicator of product quality in polymer extrusion but has traditionally been difficult to measure in-process in real-time. An innovative, yet simple, solution to this problem is proposed by a Prediction-Feedback observer mechanism. A `Prediction' model based on the operating conditions generates an open-loop estimate of the melt viscosity; this estimate is used as an input to a second, `Feedback' model to predict the pressure of the system. The pressure value is compared to the actual measured melt pressure and the error used to correct the viscosity estimate. The Prediction model captures the relationship between the operating conditions and the resulting melt viscosity and as such describes the specific material behavior. The Feedback model on the other hand describes the fundamental physical relationship between viscosity and extruder pressure and is a function of the machine geometry. The resulting system yields viscosity estimates within 1% error, shows excellent disturbance rejection properties and can be directly applied to model-based control. This is of major significance to achieving higher quality and reducing waste and set-up times in the polymer extrusion industry.
Resumo:
Background: Candida albicans is a commensal organism and a constituent of the normal oral flora. Cell concentrations of 1x102 cells/ml and below are indicative of commensal colonisation in the oral cavity, above this level C. albicans can become an opportunistic pathogen; it is the most prevalent human fungal pathogen and a causal agent of the oral infection, candidiasis. The capacity of C. albicans to cause infection arises from its ability to exist in a biofilm ecosystem. Mature C. albicans biofilms display a high level of resistance to antifungals and the need for other therapeutic options has become paramount. Objectives: The objectives of the current study were to determine the antifungal activity of LL-37 (a member of the human cathelicidin family) and two truncated peptide mimetics against C. albicans in both planktonic and biofilm form. Methods: Radial diffusion assays were used to obtain the minimum inhibitory concentration (MIC) of LL-37 and the truncated mimetics KE-18 and KR-12 against planktonic C. albicans. A 96 well microtitre plate assay was employed to study the effects of the peptides on early candida biofilm formation (up to 24 hours) compared with the antifungal drug fluconazole. Biofilm quantification was achieved using the crystal violet assay. Results: MIC values obtained: LL-37 >250µg/ml; KE-18 51µg/ml; and KR-12 11µg/ml. LL-37 significantly reduced the quantity of biofilm formed by C.albicans at both the 4 h and 24 h timepoints (p <0.0001). KE-18 showed significant biofilm reduction over 4 h and 24 h (p=0.0002, p=0.013 respectively), KR-12 showed significant reduction at the 24 h time point only (p=0.0256). Conclusions: Results suggest that LL-37 has the ability to disrupt early biofilm formation of C. albicans with its potency of action similar with that of fluconazole.
Resumo:
We describe five children who died of clinical rabies in a three month period (September to November 2011) in the Queen Elizabeth Central Hospital. From previous experience and hospital records, this number of cases is higher than expected. We are concerned that difficulty in accessing post-exposure prophylaxis (PEP) rabies vaccine may be partly responsible for this rise. We advocate: (a) prompt course of active immunisation for all patients with significant exposure to proven or suspected rabid animals. (b) the use of an intradermal immunisation regime that requires a smaller quantity of the vaccine than the intramuscular regime and gives a better antibody response. (c) improved dog rabies control measures.