132 resultados para Quantitative fractography
Resumo:
Electronprobe microanalysis is now widely adopted in tephra studies as a technique for determining the major element geochemistry of individual glass shards. Accurate geochemical characterization is crucial for enabling robust tephra-based correlations; such information may also be used to link the tephra to a specific source and often to a particular eruption. In this article, we present major element analyses for rhyolitic natural glass standards analysed on three different microprobes and the new JEOL FEGSEM 6500F microprobe at Queen’s University Belfast. Despite the scatter in some elements, good comparability is demonstrated among data yielded from this new system, the previous Belfast JEOL-733 Superprobe, the JEOL-8200 Superprobe (Copenhagen) and the existing long-established microprobe facility in Edinburgh. Importantly, our results show that major elements analysed using different microprobes and variable operating conditions allow two high-silica glasses to be discriminated accurately.
Resumo:
Persilylation of nucleoside hydroxyls was effected in quantitative yields under solvent-free conditions using a ball mill. In addition, one-pot persilylation and acylation of cytidine was performed as an exemplar reaction demonstrating the utility of solvent-free approaches to nucleoside chemistry.
Resumo:
Several large abrupt climate fluctuations during the last glacial have been recorded in Greenland ice cores and archives from other regions. Often these Dansgaard-Oeschger events are assumed to have been synchronous over wide areas, and then used as tie-points to link chronologies between the proxy archives. However, it has not yet been tested independently whether or not these events were indeed synchronous over large areas. Here, we compare Dansgaard-Oeschger-type events in a well-dated record from southeastern France with those in Greenland ice cores. Instead of assuming simultaneous climate events between both archives, we keep their age models independent. Even these well-dated archives possess large chronological uncertainties that prevent us from inferring synchronous climate events at decadal to multi-centennial time scales. If possible, comparisons between proxy archives should be based on independent, non-tuned time-scales. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The use of a water-soluble, thermo-responsive polymer as a highly sensitive fluorescence-lifetime probe of microfluidic temperature is demonstrated. The fluorescence lifetime of poly(N-isopropylacrylamide) labelled with a benzofurazan fluorophore is shown to have a steep dependence on temperature around the polymer phase transition and the photophysical origin of this response is established. The use of this unusual fluorescent probe in conjunction with fluorescence lifetime imaging microscopy (FLIM) enables the spatial variation of temperature in a microfluidic device to be mapped, on the micron scale, with a resolution of less than 0.1 degrees C. This represents an increase in temperature resolution of an order of magnitude over that achieved previously by FLIM of temperature-sensitive dyes
Resumo:
Over recent years the findings of a number of quantitative research studies have been published in the UK on gender and achievement. Much of this work has emanated from Stephen Gorard and his colleagues and has not only been highly critical of existing approaches to handling quantitative data but has also suggested a number of alternative and, what they claim to be, more valid ways of measuring differential patterns of achievement and underachievement between groups. This article shows how much of this work has been based upon rather under-developed measures of achievement and underachievement that tend, in turn, to generate a number of misleading findings that have questionable implications for practice. It will be argued that this body of work provides a useful case study in the problems of quantitative research that fails to engage adequately with the substantive theoretical and empirical literature and considers some of the implications of this for future research in this area.
Resumo:
PURPOSE: To determine whether continuous monitoring of SYBR Green I fluorescence provides a reliable and flexible method of quantitative RT-PCR. Our aims were (i) to test whether SYBR Green I analysis could quantify a wide range of known VEGF template concentrations, (ii) to apply this method in an experimental model, and (iii) to determine whether 20 existing primer pairs could be used to quantify their cognate mRNAs.
Resumo:
If a novel, resistant host-plant genotype arises in the environment, insect populations utilising that host must be able to overcome that resistance in order that they can maintain their ability to feed on that host. The ability to evolve resistance to host-plant defences depends upon additive genetic variation in larval performance and adult host-choice preference. To investigate the potential of a generalist herbivore to respond to a novel resistant host, we estimated the heritability of larval performance in the noctuid moth, Helicoverpa armigera, on a resistant and a susceptible variety of the chickpea, Cicer arietinum, at two different life stages. Heritability estimates were higher for neonates than for third-instar larvae, suggesting that their ability to establish on plants could be key to the evolution of resistance in this species; however, further information regarding the nature of selection in the field would be required to confirm this prediction. There was no genetic correlation between larval performance and oviposition preference, indicating that female moths do not choose the most suitable plant for their offspring. We also found significant genotype by environment interactions for neonates (but not third-instar larvae), suggesting that the larval response to different plant genotypes is stage-specific in this species.