147 resultados para Probabilistic Algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix algorithms are important in many types of applications including image and signal processing. A close examination of the algorithms used in these, and related, applications reveals that many of the fundamental actions involve matrix algorithms such as matrix multiplication. This paper presents an investigation into the design and implementation of different matrix algorithms such as matrix operations, matrix transforms and matrix decompositions using a novel custom coprocessor system for MATrix algorithms based on Reconfigurable Computing (RCMAT). The proposed RCMAT architectures are scalable, modular and require less area and time complexity with reduced latency when compared with existing structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the relations between extended incidence calculus and assumption-based truth maintenance systems (ATMSs). We first prove that managing labels for statements (nodes) in an ATMS is equivalent to producing incidence sets of these statements in extended incidence calculus. We then demonstrate that the justification set for a node is functionally equivalent to the implication relation set for the same node in extended incidence calculus. As a consequence, extended incidence calculus can provide justifications for an ATMS, because implication relation sets are discovered by the system automatically. We also show that extended incidence calculus provides a theoretical basis for constructing a probabilistic ATMS by associating proper probability distributions on assumptions. In this way, we can not only produce labels for all nodes in the system, but also calculate the probability of any of such nodes in it. The nogood environments can also be obtained automatically. Therefore, extended incidence calculus and the ATMS are equivalent in carrying out inferences at both the symbolic level and the numerical level. This extends a result due to Laskey and Lehner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Logistic regression and Gaussian mixture model (GMM) classifiers have been trained to estimate the probability of acute myocardial infarction (AMI) in patients based upon the concentrations of a panel of cardiac markers. The panel consists of two new markers, fatty acid binding protein (FABP) and glycogen phosphorylase BB (GPBB), in addition to the traditional cardiac troponin I (cTnI), creatine kinase MB (CKMB) and myoglobin. The effect of using principal component analysis (PCA) and Fisher discriminant analysis (FDA) to preprocess the marker concentrations was also investigated. The need for classifiers to give an accurate estimate of the probability of AMI is argued and three categories of performance measure are described, namely discriminatory ability, sharpness, and reliability. Numerical performance measures for each category are given and applied. The optimum classifier, based solely upon the samples take on admission, was the logistic regression classifier using FDA preprocessing. This gave an accuracy of 0.85 (95% confidence interval: 0.78-0.91) and a normalised Brier score of 0.89. When samples at both admission and a further time, 1-6 h later, were included, the performance increased significantly, showing that logistic regression classifiers can indeed use the information from the five cardiac markers to accurately and reliably estimate the probability AMI. © Springer-Verlag London Limited 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the purpose of equalisation of rapidly time variant multipath channels, we derive a novel adaptive algorithm, the amplitude banded LMS (ABLMS); which implements a nonlinear adaptation based on a coefficient matrix. Then we develop the: ABLMS algorithm as the adaptation procedure for a linear transversal equaliser (LTE) and a decision feedback equaliser (DFE) where a parallel adaptation scheme is deployed. Computer simulations demonstrate that with a small increase of computational complexity, the ABLMS based parallel equalisers provide a significant improvement related to the conventional LMS DFE and the LMS LTE in the case of a second order Markov communication channel model.