66 resultados para Predatory mite
Resumo:
Studies of invasion scenarios over long time periods are important to refine explanations and predictions of invasion success and impact. We used data from surveys in 1958 and 1999 of the macroinvertebrates of Lough Neagh, Northern Ireland, to assess changes in the distribution of native and introduced amphipods in relation to the wider assemblage. In 1958, the invader G. tigrinus dominated the shoreline fauna, with the native G. d. celticus present in very low numbers, whereas in 1999 the reverse was evident. In both surveys, G. tigrinus was the only amphipod present in the mid-Lough. G. tigrinus thus seems to have become established within L. Neagh, perhaps overshot and then senesced, with the native species re-establishing on the shoreline, with the invader mostly restricted to the deep mid-Lough. The non-amphipod macroinvertebrate assemblage was similar between the two surveys, in terms of Bray-Curtis community similarity, assemblage diversity, dominance and the taxa based ASPT water quality index. However, the mean density of macroinvertebrates (all taxa combined) was lower in 1999 compared to 1958, largely accounted for by a decline in oligochaete numbers. Since Gammarus species may be predators of other macroinvertebrates and influence their distribution and abundance, we investigated this trophic link in staged laboratory encounters. Both G. tigrinus and G. d. celticus preyed on isopods, alderflies, mayflies, chironomids and mysids, however, the native G. d. celticus had a significantly greater predatory impact on isopods and chironomids than did the invader G. tigrinus. While we cannot definitively ascribe cause and effect in the present scenario, we discuss how replacement of one amphipod species by another may have impacts on the wider macroinvertebrate assemblage.
Resumo:
An attempt to improve the food base for brown trout Salmo trutta in Northern Ireland was made in 1958.59 by deliberately introducing English Gammarus pulex into several Irish rivers. In addition. another amphipod Crangonyx pseudogracilis, was later accidently introduced into II ish waters. Our study represents the first attempt to examine the trophic interactions between a native fish predator (S. trutta) and an array of these native (Gammarus duebeni celticus) and introduced (G. pulex and C. pseudogracilis) amphipods. Feeding experiments, involving young brown trout predators and ampiphod prey, revealed that the fish actively selected C. pseudogracilis relative to two alternative Gammarus prey species. Although the trout encountered the Gammarus species more than C. pseudogracilis, they were eaten less than Crangonyx. Difficulties in handling and ingestion of Gammarus by trout may be a. key component of the preference fbr the smaller, more easily handled Crangonyx. The microdistribution of the species was altered by the fish, due to predation being greater in particular microhabitats, Our study showed that the introduction of the herbivorous C. pseudogracilis into Irish freshwaters may represent a useful addition to fish diets. particularly for small and/or juvenile fish. The reprecussions of the deliberate introduction of G. pulex are less clear. It may improve feeding for fish. but only if it can coexist with indigenous macroinvertebrates and thus ultimately improve the range and quantity of possible food items in predator diets. Alternatively, being highly predatory towards other macroinvertebrates including G. d. celticus and C. pseudogracilis. G. pulex may be deleterious to the diversity of the resident benthic community and hence reduce the diversity of prey available to fish predators.
Resumo:
Heart-of-palm (Euterpe edulis Mart.) is a wild palm with a wide distribution throughout the Atlantic Rainforest. Populations of E. edulis represent important renewable natural resources but are currently under threat from predatory exploitation. Furthermore, because the species is indigenous to the Atlantic Rainforest, which is located in the most economically developed and populated region of Brazil, social and economic pressures have devastated heart-of-palm forests. In order to estimate the partitioning of genetic variation of endangered E. edulis populations, 429 AFLP markers were used to analyse 150 plants representing 11 populations of the species distribution range. Analysis of the genetic structure of populations carried out using analysis of molecular variance (AMOVA) revealed moderate genetic variation within populations (57.4%). Genetic differentiation between populations (F-ST = 0.426) was positively correlated with geographical distance. These results could be explained by the historical fragmentation of the Atlantic coastal region, together with the life cycle and mating system The data obtained in this work should have important implications for conservation and future breeding programmes of E. edulis.
Resumo:
Invasive species may threaten the fundamental role played by native macroinvertebrate shredders in determining energy flow and the trophic dynamics of freshwater ecosystems. Functionally, amphipods have long been regarded as mainly shredders, but they are increasingly recognized as major predators of other macroinvertebrate taxa. Furthermore, intraguild predation (IGP) between native and invasive amphipods underlies many species displacements. We used laboratory mesocosms to investigate what might happen to shredders and leaf-litter processing in water bodies invaded by the highly predatory Ponto-Caspian amphipod Dikerogammarus villosus, which is spreading rapidly throughout Europe and may soon invade the North American Great Lakes. The leaf-shredding efficiency of D. villosus was significantly lower than that of 3 Gammarus species (2 native and 1 invasive) that D. villosus has either already displaced or may be currently displacing in The Netherlands. In addition, D. villosus was a major predator of all of these native and invasive amphipod shredders and of a common isopod shredder Asellus aquaticus. Leaf processing in Gammarus and Asellus mesocosms declined rapidly in the presence of D. villosus and ceased altogether within 4 d because by then, all potential shredders had been killed and consumed. Furthermore, the shredding efficiency of surviving amphipods and isopods declined significantly within 2 d of the release of D. villosus, a result indicating that predator-avoidance behavior may override leaf processing. We discuss the implications of these direct and indirect effects of D. villosus invasions and species displacements on community structure and litter processing in aquatic ecosystems. © 2011 The North American Benthological Society.
--------------------------------------------------------------------------------
Reaxys Database Information|
Resumo:
The rate of species loss is increasing at a global scale, and human-induced extinctions are biased toward predator species. We examined the effects of predator extinctions on a foundation species, the eastern oyster (Crassostrea virginica). We performed a factorial experiment manipulating the presence and abundance of three of the most common predatory crabs, the blue crab (Callinectes sapidus), stone crab (Menippe mercenaria), and mud crab (Panopeus herbstii) in estuaries in the eastern United States. We tested the effects of species richness and identity of predators on juvenile oyster survival, oyster recruitment, and organic matter content of sediment. We also manipulated the density of each of the predators and controlled for the loss of biomass of species by maintaining a constant mass of predators in one set of treatments and simultaneously using an additive design. This design allowed us to test the density dependence of our results and test for functional compensation by other species. The identity of predator species, but not richness, affected oyster populations. The loss of blue crabs, alone or in combination with either of the other species, affected the survival rate of juvenile oysters. Blue crabs and stone crabs both affected oyster recruitment and sediment organic matter negatively. Mud crabs at higher than ambient densities, however, could fulfill some of the functions of blue and stone crabs, suggesting a level of ecological redundancy. Importantly, the strong effects of blue crabs in all processes measured no longer occurred when individuals were present at higher-than-ambient densities. Their role as dominant predator is, therefore, dependent on their density within the system and the density of other species within their guild (e.g., mud crabs). Our findings support the hypothesis that the effects of species loss at higher trophic levels are determined by predator identity and are subject to complex intraguild interactions that are largely density dependent. Understanding the role of biodiversity in ecosystem functioning or addressing practical concerns, such as loss of predators owing to overharvesting, remains complicated because accurate predictions require detailed knowledge of the system and should be drawn from sound experimental evidence, not based on observations or generalized models.
Resumo:
Specimens of the polyplacophoran mollusk 'Helminthochiton' thraivensis Reed from the Upper Ordovician of southwest Scotland provide rare examples of complete valve series preserved in near life position, albeit as external molds. Application of high-resolution X-ray microtomography to one such specimen has revealed the exceptional preservation of its last meal, which included elements of a crinoid column, in its intestine. The interaction was either predatory or scavenging; extant chitons are not known to be crinoidivorous. This is the earliest direct record of predation or scavenging on crinoids in the fossil record. It is also the first indication that the broad axial canal of primitive crinoids may have contained nutritious tissues. The predatory or scavenging habit of H. thraivensis is consistent with its inferred phylogenetic position as a stem-group aplacophoran and provides new data suggesting an origin of carnivory early in the evolution of this clade.
Resumo:
An optimal search theory, the so-called Levy-flight foraging hypothesis(1), predicts that predators should adopt search strategies known as Levy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey(2-4). Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Levy behaviour has recently been questioned(5,6). Consequently, whether foragers exhibit Levy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory's central predictions. Here we use maximum-likelihood methods to test for Levy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Levy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Levy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Levy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Levy-flight foraging hypothesis(1,7), supporting the contention(8,9) that organism search strategies naturally evolved in such a way that they exploit optimal Levy patterns.
Resumo:
Usage of anticoagulant rodenticides (ARs) is an integral component of modern agriculture and is essential for the control of commensal rodent populations. However, the extensive deployment of ARs has led to widespread exposure of a range of non-target predatory birds and mammals to some compounds, in particular the second-generation anticoagulant rodenticides (SCARS). As a result, there has been considerable effort placed into devising voluntary best practice guidelines that increase the efficacy of rodent control and reduce the risk of non-target exposure. Currently, there is limited published information on actual practice amongst users or implementation of best practice. We assessed the behaviour of a typical group of users using an on-farm questionnaire survey. Most baited for rodents every year using SGARs. Most respondents were apparently aware of the risks of non-target exposure and adhered to some of the best practice recommendations but total compliance was rare. Our questionnaire revealed that users of first generation anticoagulant rodenticides rarely protected or checked bait stations, and so took little effort to prevent primary exposure of non-targets. Users almost never searched for and removed poisoned carcasses and many baited for prolonged periods or permanently. These factors are all likely to enhance the likelihood of primary and secondary exposure of non-target species. (C) 2010 Published by Elsevier Ltd.
Resumo:
The epidermis of the predatory terrestrial flatworm. Artioposthia triangulata has been examined by transmission electron microscopy for the presence of rhabdiform secretions. Two types of secretion are present: epidermal rhabdoids, produced by a special type of epidermal cell and true adenal rhabdites produced by gland cells beneath the epidermis. The epidermal rhabdoids are formed from Golgi-derived vesicles, which Fuse together to form the developing rhabdoid. Within the latter is a filamentous network on which granular material is deposited and coalesces to form a rod-shaped inclusion. The rhabdoids accumulate in the apical region of the cell and release their contents from the apical surface. The adenal rhabdites are formed by Golgi-derived vesicles. which become more elongated and their contents more electron-dense as they mature. The vesicles Fuse together to form the primordial rhabdite, which continues to lengthen with the addition of further vesicles. The neck of the rhabdite-forming cell passes between the muscle layers and through the basement membrane to open into the base of the epidermal cell. The rhabdites move from the cell body through the neck into the cytoplasm of the epidermal cell and make their way to the apical surface where they are released to the exterior.
Resumo:
Marine ecosystems and their associated populations are increasingly at risk from the cumulative impacts of many anthropogenic threats that increase the likelihood of species extinction and altered community dynamics. In response, marine reserves can be used to protect exploited species and conserve biodiversity. The increased abundance of predatory species in marine reserves may cause indirect effects along chains of multi-trophic interactions. These trophic cascades can arise through direct predation, density-mediated indirect interactions (DMIIs), or indirect behavioural effects, termed trait-mediated indirect interactions (TMIIs). The extent of algal cover and the abundance of 4 primary consumers were determined in Lough Hyne, which was designated Europe's first marine nature reserve in 1981. The primary consumers were the sea urchin Paracentrotus lividus, the topshell Gibbula cineraria, the oyster Anomia ephippium, and the scallop Chlamys varia. The abundances of 3 starfish species (Marthasterias glacialis, Asterias rubens, and Asterina gibbosa) were also determined, as were 2 potential crustacean predators, Necora puber and Carcinus maenas. These data were compared with historical data from a 1962 (prey) and a 1963 (predator) survey to determine the nature of community interactions over adjacent trophic levels. The present study reveals a breakdown in population structure of the 4 surveyed prey species. Marine reserve designation has led to an increase in predatory crabs and M. glacialis, a subsequent decrease in primary consumers, especially the herbivore P. lividus, and an increase in macroalgal cover which is indicative of a trophic cascade. The study shows that establishing a Marine Reserve does not guarantee that conservation benefits will be distributed equally.
Resumo:
The influence of predation in structuring ecological communities can be informed by examining the shape and magnitude of the functional response of predators towards prey. We derived functional responses of the ubiquitous intertidal amphipod Echinogammarus marinus towards one of its preferred prey species, the isopod Jaera nordmanni. First, we examined the form of the functional response where prey were replaced following consumption, as compared to the usual experimental design where prey density in each replicate is allowed to deplete. E. marinus exhibited Type II functional responses, i.e. inversely density-dependent predation of J. nordmanni that increased linearly with prey availability at low densities, but decreased with further prey supply. In both prey replacement and non-replacement experiments, handling times and maximum feeding rates were similar. The non-replacement design underestimated attack rates compared to when prey were replaced. We then compared the use of Holling’s disc equation (assuming constant prey density) with the more appropriate Rogers’ random predator equation (accounting for prey depletion) using the prey non-replacement data. Rogers’ equation returned significantly greater attack rates but lower maximum feeding rates, indicating that model choice has significant implications for parameter estimates. We then manipulated habitat complexity and found significantly reduced predation by the amphipod in complex as opposed to simple habitat structure. Further, the functional response changed from a Type II in simple habitats to a sigmoidal, density-dependent Type III response in complex habitats, which may impart stability on the predator−prey interaction. Enhanced habitat complexity returned significantly lower attack rates, higher handling times and lower maximum feeding rates. These findings illustrate the sensitivity of the functional response to variations in prey supply, model selection and habitat complexity and, further, that E. marinus could potentially determine the local exclusion and persistence of prey through habitat-mediated changes in its predatory functional responses.
Resumo:
Forecasting the ecological impacts of invasive species is a major challenge that has seen little progress, yet the development of robust predictive approaches is essential as new invasion threats continue to emerge. A common feature of ecologically damaging invaders is their ability to rapidly exploit and deplete resources. We thus hypothesized that the 'functional response' (the relationship between resource density and consumption rate) of such invasive species might be of consistently greater magnitude than those of taxonomically and/or trophically similar native species. Here, we derived functional responses of the predatory Ponto-Caspian freshwater 'bloody red' shrimp, Hemimysis anomala, a recent and ecologically damaging invader in Europe and N. America, in comparison to the local native analogues Mysis salemaai and Mysis diluviana in Ireland and Canada, respectively. This was conducted in a novel set of experiments involving multiple prey species in each geographic location and a prey species that occurs in both regions. The predatory functional responses of the invader were generally higher than those of the comparator native species and this difference was consistent across invaded regions. Moreover, those prey species characterized by the strongest and potentially de-stabilizing Type II functional responses in our laboratory experiments were the same prey species found to be most impacted by H. anomala in the field. The impact potential of H. anomala was further indicated when it exhibited similar or higher attack rates, consistently lower prey handling times and higher maximum feeding rates compared to those of the two Mysis species, formerly known as 'Mysis relicta', which itself has an extensive history of foodweb disruption in lakes to which it has been introduced. Comparative functional responses thus merit further exploration as a methodology for predicting severe community-level impacts of current and future invasive species and could be entered into risk assessment protocols.
Resumo:
Bdellovibrio bacteriovorus is a Gram-negative bacterium that preys on other Gram-negative bacteria. The lifecycle of B. bacteriovorus alternates between an extracellular flagellated and highly motile non-replicative attack-phase cell and a periplasmic non-flagellated growth-phase cell. The prey bacterium containing periplasmic bdellovibrios becomes spherical but osmotically stable, forming a structure known as the bdelloplast. After completing the growth phase, newly formed bdellovibrios regain their flagellum and escape the bdelloplast into the environment, where they encounter more prey bacteria. The obligate predatory nature of B. bacteriovorus imposes a major difficulty to introducing mutations in genes directly involved in predation, since these mutants could be non-viable. This work reports the cloning of the B. bacteriovorus 109J motAB operon, encoding proteins from the flagellar motor complex, and a genetic approach based on the expression of a motA antisense RNA fragment to downregulate motility. Periplasmic bdellovibrios carrying the plasmid expressing antisense RNA displayed a marked delay in escaping from bdelloplasts, while the released attack-phase cells showed altered motility. These observations suggest that a functionally intact flagellar motor is required for the predatory lifecycle of B. bacteriovorus. Also, the use of antisense RNA expression may be a useful genetic tool to study the Bdellovibrio developmental cycle.
Resumo:
Animals often show behavioural plasticity with respect to predation risk but also show behavioural syndromes in terms of consistency of responses to different stimuli. We examine these features in the freshwater pearl mussel. These bivalves often aggregate presumably to reduce predation risk to each individual. Predation risk, however, will be higher in the presence of predator cues. Here we use dimming light, vibration and touch as novel stimuli to examine the trade-off between motivation to feed and motivation to avoid predation. We present two experiments that each use three sequential novel stimuli to cause the mussels to close their valves and hence cease feeding. We find that mussels within a group showed shorter closure times than solitary mussels, consistent with decreased vulnerability to predation in group-living individuals. Mussels exposed to the odour of a predatory crayfish showed longer closures than control mussels, highlighting the predator assessment abilities of this species. However, individuals showed significant consistency in their closure responses across the trial series, in line with behavioural syndrome theory. Our results show that bivalves trade-off feeding and predator avoidance according to predation risk but the degree to which this is achieved is constrained by behavioural consistency. © 2011 Elsevier B.V.
Resumo:
1. Ecologists are debating the relative role of deterministic and stochastic determinants of community structure. Although the high diversity and strong spatial structure of soil animal assemblages could provide ecologists with an ideal ecological scenario, surprisingly little information is available on these assemblages.
2. We studied species-rich soil oribatid mite assemblages from a Mediterranean beech forest and a grassland. We applied multivariate regression approaches and analysed spatial autocorrelation at multiple spatial scales using Moran's eigenvectors. Results were used to partition community variance in terms of the amount of variation uniquely accounted for by environmental correlates (e.g. organic matter) and geographical position. Estimated neutral diversity and immigration parameters were also applied to a soil animal group for the first time to simulate patterns of community dissimilarity expected under neutrality, thereby testing neutral predictions.
3. After accounting for spatial autocorrelation, the correlation between community structure and key environmental parameters disappeared: about 40% of community variation consisted of spatial patterns independent of measured environmental variables such as organic matter. Environmentally independent spatial patterns encompassed the entire range of scales accounted for by the sampling design (from tens of cm to 100 m). This spatial variation could be due to either unmeasured but spatially structured variables or stochastic drift mediated by dispersal. Observed levels of community dissimilarity were significantly different from those predicted by neutral models.
4. Oribatid mite assemblages are dominated by processes involving both deterministic and stochastic components and operating at multiple scales. Spatial patterns independent of the measured environmental variables are a prominent feature of the targeted assemblages, but patterns of community dissimilarity do not match neutral predictions. This suggests that either niche-mediated competition or environmental filtering or both are contributing to the core structure of the community. This study indicates new lines of investigation for understanding the mechanisms that determine the signature of the deterministic component of animal community assembly.