52 resultados para Precious stones.
Resumo:
The Regional Cultural Centre in Letterkenny is a new 2000sqm arts center containing theatre, galleries, workshops and ancillary offices. The site is set back from the street, on high ground with good views. The form and envelope of the building was derived from geometrically connecting the site with the town’s two other main public buildings, the Cathedral (1901) and new Civic Offices (2002, also designed by MacGabhann Architects). This geometrical connection or vectors informed the geometry and shape of the building. This urban matrix of geometrically connecting three corner stones of society, namely the ecclesiastical headquarters, the administrative head quarters and the art centre helps to improve the town planning and urban design of the disparate and chaotic development that Letterkenny has become.
The large cantilever, which houses a 300sqm gallery, is aligned towards the Civic Offices, marks the entrance, and signifies a change of direction of the pedestrian route past the building, like a modern day obelisk.
The circulation routes and stairs internally provide views towards the civic offices and cathedral, thus reinforcing the connection between the three buildings and helps visitors make some sense of Letterkenny as an urban center. The main stairs and vertical circulation are contained behind the large glazed foyer, which is framed to be viewed externally like a proscenium stage, with visitors to the building passively acting their routes through the building.
Resumo:
Around 1-2 people per thousand present with an acute episode of pain caused by renal stones each year. Renal colic is classically sudden in onset, unilateral, and radiates from loin to groin. Renal pelvic or upper ureteric stones usually cause more flank pain and tenderness while lower ureteric stones cause pain radiating towards the ipsilateral testicle or labia. Other common symptoms include nausea and vomiting, haematuria and irritative LUTS. A febrile patient with renal colic requires immediate hospital admission. Symptoms suggestive of renal colic along with a positive dipstick for haematuria have a reported sensitivity of 84% and specificity of 99% but it is important to consider other differential diagnoses. An NSAID is preferred over an opiate drug as an initial analgesic choice as the NSAID can help reduce ureteric spasm. Diclofenac has the best evidence base for this class of analgesic. About 90% of stones will pass spontaneously and thus it is often appropriate to manage renal colic at home. Patients with signs of peritonitis, systemic infection, septic shock as well as those whose diagnosis is unclear should be referred urgently to hospital. Patients who are systemically unwell with renal stones are more likely to have an infected and obstructed urinary tract system that needs urgent imaging and possible drainage. All patients who are managed at home should have renal tract imaging within a week by fast track referral to radiology or as an urgent urology outpatient referral as per local guidelines to rule out an obstructed urinary system. Patients with recurrent stones should be advised to maintain a copious fluid intake (>2 L/day) to reduce the concentration of the urine. A reduction in salt intake (ideally
Resumo:
Salt weathering is a crucial process that brings about a change in stone, from the scale of landscapes to stone outcrops and natural building stone facades. It is acknowledged that salt weathering is controlled by fluctuations in temperature and moisture, where repeated oscillations in these parameters can cause re-crystallisation, hydration/de-hydration of salts, bringing about stone surface loss in the form of, for example, granular disaggregation, scaling, and multiple flaking. However, this ‘traditional’ view of how salt weathering proceeds may need to be re-evaluated in the light of current and future climatic trends. Indeed, there is considerable scope for the investigation of consequences of climate change on geomorphological processes in general. Building on contemporary research on the ‘deep wetting’ of natural building stones, it is proposed that (as stone may be wetter for longer), ion diffusion may become a more prominent mechanism for the mixing of molecular constituents, and a shift in focus from physical damage to chemical change is suggested. Data from ion diffusion cell experiments are presented for three different sandstone types, demonstrating that salts may diffuse through porous stone relatively rapidly (in comparison to, for example, dense concrete). Pore water from stones undergoing diffusion experiments was extracted and analysed. Factors controlling ion diffusion
relating to ‘time of wetness’ within stones are discussed, (continued saturation, connectivity of pores, mineralogy, behaviour of salts, sedimentary structure), and potential changes in system dynamics as a result of climate change are addressed. System inputs may change in terms of increased moisture input, translating into a greater depth of wetting front. Salts are likely to be ‘stored’ differently in stones, with salt being in solution for longer periods (during prolonged winter wetness). This has myriad implications in terms of the movement of ions by diffusion and the potential for chemical change in the stone (especially in more mobile constituents), leading to a weakening of the stone matrix/grain boundary cementing. The ‘output’ may be mobilisation and precipitation of elements leading to, for example, uneven cementing in the stone. This reduced strength of the stone, or compromised ability of the stone to absorb stress, is likely to make crystallisation a more efficacious mechanism of decay when it does occur. Thus, a delay in the onset of crystallisation while stonework is wet does not preclude exaggerated or accelerated material loss when it finally happens.
Resumo:
With emission legislation becoming ever more stringent, automotive companies are forced to invest heavily into solutions to meet the targets set. To date the most effective way of treating emissions is through the use of catalytic converters. Current testing methods of catalytic converters whether being tested on a vehicle or in a lab reactor can be expensive and offer little information about what is occurring within the catalyst. It is for this reason and the increased price of precious metal that kinetic modelling has become a popular alternative to experimental testing.
Resumo:
Moisture is a well documented, and crucial, control on the nature of stone decay. The term time of wetness has frequently been adopted to describe how long a stone block is wet, with a view to understanding the impact of this on decay processes. Although this term has proved conceptually useful, it has been used in different ways, by different groups to mean mean quite different things. For example, the time of wetness for a stone block surface (the traditional understanding) may be quite different from that of a block interior, controlled by the different dynamics of wetting and drying in those zones. Thus, surface wetting will occur regularly (sometimes swiftly followed by drying, depending on the time of year), with block interior wetting requiring the accumulation of surface moisture to penetrate to depth (more likely in autumn and winter months), and drying out much more slowly. This relatively new but important perspective, framed in the context of climate change, is crucial to understanding the length of time stone may remain damp at depth following a period of prolonged precipitation. The nature and speed of drying is also relevant in quantifying time of wetness of both surfaces and the interior of building stones.
These ideas related to time of wetness have implications for decay processes, specifically how a prolonged time of deep wetness may re-focus the emphasis of salt weathering in natural building stones toward chemical action. Literature on chemical change is discussed, suggesting that chemical change occurring during periods of prolonged wetness is likely to be significant in itself, with implications for weakening the stone (in terms of, for example, cement dissolution or grain boundary weakening) and exacerbating physical damage from salt crystallisation when blocks finally dry out.
Resumo:
As Emerson noted in his essay 'The Poet' "we are not pans and barrows, not even porters of the fire and torch-bearers, but children of the fire, made of it, and only the same divinity transmuted, and at two or three removes, when we least know about it." For Emerson, the fire is poetry, an elemental force capable of transmutation, transformation and enduring relevance. Moving from Emerson, Elizabeth Bishop rises as the twentieth-century poet most aligned with the possibility of poetry and the powers of its practice, as 'At The Fishhouses' indicates in her clear referencing of Emerson:
"If you should dip your hand in,
your wrist would ache immediately,
your bones would begin to ache and your hand would burn
as if the water were a transmutation of fire
that feeds on stones and burns with a dark gray flame."
This essay will look in detail at Bishop's understanding of the possibility of poetry and how art functions as a multi-dimensional structure that is unsettled as much as it unsettles. In particular, Bishop's poem 'The Monument' will be unpicked as testament both to the practice of Bishop's art and also the role of the poet critic responding to what they uncover
Resumo:
The Irish Pavilion at the Venice Architecture Biennale 2012 charts a position for Irish architecture in a global culture where the modes of production of architecture are radically altered. Ireland is one of the most globalised countries in the world, yet it has developed a national culture of architecture derived from local place as a material construct. We now have to evolve our understanding in the light of the globalised nature of economic processes and architectural production which is largely dependent on internationally networked flows of products, data, and knowledge. We have just begun to represent this situation to ourselves and others. How should a global architecture be grounded culturally and philosophically? How does it position itself outside of shared national reference points?
heneghan peng architects were selected as participants because they are working across three continents on a range of competition-winning projects. Several of these are in sensitive and/or symbolic sites that include three UNESCO World Heritage sites, including the Grand Egyptian Museum in Cairo, the Giants Causeway Visitor Centre in Northern Ireland, and the new Rhine Bridge near Lorelei.
Our dialogue led us to discussing the universal languages of projective geometry and number are been shared by architects and related professionals. In the work of heneghan peng, the specific embodiment of these geometries is carefully calibrated by the choice of materials and the detailed design of their physical performance on site. The stone facade of the Giant’s Causeway Visitor Centre takes precise measure of the properties of the volcanic basalt seams from which it is hewn. The extraction of the stone is the subject of the pavilion wall drawings which record the cutting of stones to create the façade of the causeway centre.
We also identified water as an element which is shared across the different sites. Venice is a perfect place to take measure of this element which suggests links to another site – the Nile Valley which was enriched by the annual flooding of the River Nile. An ancient Egyptian rod for measuring the water level of the Nile inspired the design of the Nilometre - a responsive oscillating bench that invites visitors to balance their respective weights. This action embodies the ways of thinking that are evolving to operate in the globalised world, where the autonomous architectural object is dissolving into an expanded field of conceptual rules and systems. The bench constitutes a shifting ground located in the unstable field of Venice. It is about measurement and calibration of the weight of the body in relation to other bodies; in relation to the site of the installation; and in relation to water. The exhibit is located in the Artiglierie section of the Arsenale. Its level is calibrated against the mark of the acqua alta in the adjacent brickwork of the building which embodies a liminal moment in the fluctuating level of the lagoon.
The weights of bodies, the level of water, changes over time, are constant aspects of design across cultures and collectively they constitute a common ground for architecture - a ground shared with other design professionals. The movement of the bench required complex engineering design and active collaboration between the architects, engineers and fabricators. It is a kind of prototype – a physical object produced from digital data that explores the mathematics at play – the see-saw motion invites the observer to become a participant, to give it a test drive. It shows how a simple principle can generate complex effects that are difficult to predict and invites visitors to experiment and play with them.
Resumo:
The temporal analysis of products (TAP) technique was successfully applied for the first time to investigate the reverse water-gas shift (RWGS) reaction over a 2% Pt/CeO2 catalyst. The adsorption/desorption rate constants for CO2 and H-2 were determined in separate TAP pulse-response experiments, and the number of H-containing exchangeable species was determined using D-2 multipulse TAP experiments. This number is similar to the amount of active sites observed in previous SSITKA experiments. The CO production in the RWGS reaction was studied in a TAP experiment using separate (sequential) and simultaneous pulsing Of CO2 and H-2. A small yield of CO was observed when CO2 was pulsed alone over the reduced catalyst, whereas a much higher CO yield was observed when CO2 and H-2 were pulsed consecutively. The maximum CO yield was observed when the CO2 pulse was followed by a H-2 pulse with only a short (1 s) delay. Based on these findings, we conclude that an associative reaction mechanism dominates the RWGS reaction under these experimental conditions. The rate constants for several elementary steps can be determined from the TAP data. In addition, using a difference in the time scale of the separate reaction steps identified in the TAP experiments, it is possible to distinguish a number of possible reaction pathways. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Ancient stone monuments (ASMs), such as standing stones and rock art panels, are powerful and iconic expressions of Britain’s rich prehistoric past that have major economic and tourism value. However, ASMs are under pressure due to increasing anthropogenic exposure and changing climatic conditions, which accelerate their rates of disrepair. Although scientific data exists on the integrity of stone monuments, most applies to “built” systems; therefore, additional work specific to ASMs in the countryside is needed to develop better-informed safeguarding strategies. Here, we use Neolithic and Bronze Age rock art panels across Northern England as a case study for delineating ASM management actions required to enhance monument preservation. The state of the rock art is described first, including factors that led to current conditions. Rock art management approaches then are described within the context of future environments, which models suggest to be more dynamic and locally variable. Finally, a Condition Assessment and Risk Evaluation (CARE) scheme is proposed to help prioritise interventions; an example of which is provided based on stone deterioration at Petra in Jordon. We conclude that more focused scientific and behavioural data, specific to deterioration mechanisms, are required for an ASM CARE scheme to be successful.
Resumo:
The art of drystone walling is a highly sustainable traditional practice which uses local materials and craftsmen. As no
mortar is used they have low embodied carbon, and much repair work or rebuilding can be carried out using very little if any new
materials. However local practices developed to suit local materials, leading to a range of construction styles, making them difficult to
assess. This paper examines a range of construction styles of drystone retaining walls in use across the United Kingdom.
Understanding of the substantial variations of construction style is essential to enable proper assessment of these structures. Different
frictional and weathering characteristics, and the naturally occurring shapes of stone found in an area, all affect the ways in which the
stones have traditionally been assembled into walls. Ease of construction also plays a part, as the craftsman will naturally wish to
achieve a robust construction in a way that is economical of time and effort. Aesthetics may be very important, for both client and
craftsman. It is also shown that construction style is influenced by the location and function of the structures, with harbour walls
particularly likely to have unique characteristics, and the reasons for this are explored.
Resumo:
Transitional justice literature has highlighted a negative relationship between enforced disappearances and reconciliation in post-conflict settings. Little attention has been paid to how human rights issues can become stepping-stones to reconciliation. The article explains the transformation of the Cypriot Committee on Missing Persons (CMP) from an inoperative body into a successful humanitarian forum, paving the way for the pro-rapprochement bi-communal grassroots mobilization of the relatives of the missing. By juxtaposing the experience of Cyprus with other societies confronting similar problems, the article shows how the issue of the missing can become a driving force for reconciliation. The findings indicate that a policy delinking humanitarian exhumations from the prospect of a wider political settlement facilitates positive transformation in protracted human rights problems and opens up a window of opportunity to grassroots actors.
Resumo:
Mineral exploration programmes around the world use data from remote sensing, geophysics and direct sampling. On a regional scale, the combination of airborne geophysics and ground-based geochemical sampling can aid geological mapping and economic minerals exploration. The fact that airborne geophysical and traditional soil-sampling data are generated at different spatial resolutions means that they are not immediately comparable due to their different sampling density. Several geostatistical techniques, including indicator cokriging and collocated cokriging, can be used to integrate different types of data into a geostatistical model. With increasing numbers of variables the inference of the cross-covariance model required for cokriging can be demanding in terms of effort and computational time. In this paper a Gaussian-based Bayesian updating approach is applied to integrate airborne radiometric data and ground-sampled geochemical soil data to maximise information generated from the soil survey, to enable more accurate geological interpretation for the exploration and development of natural resources. The Bayesian updating technique decomposes the collocated estimate into a production of two models: prior and likelihood models. The prior model is built from primary information and the likelihood model is built from secondary information. The prior model is then updated with the likelihood model to build the final model. The approach allows multiple secondary variables to be simultaneously integrated into the mapping of the primary variable. The Bayesian updating approach is demonstrated using a case study from Northern Ireland where the history of mineral prospecting for precious and base metals dates from the 18th century. Vein-hosted, strata-bound and volcanogenic occurrences of mineralisation are found. The geostatistical technique was used to improve the resolution of soil geochemistry, collected one sample per 2 km2, by integrating more closely measured airborne geophysical data from the GSNI Tellus Survey, measured over a footprint of 65 x 200 m. The directly measured geochemistry data were considered as primary data in the Bayesian approach and the airborne radiometric data were used as secondary data. The approach produced more detailed updated maps and in particular maximized information on mapped estimates of zinc, copper and lead. Greater delineation of an elongated northwest/southeast trending zone in the updated maps strengthened the potential to investigate stratabound base metal deposits.
Resumo:
I charted unofficial border-crossings along Ireland's border, those not found on any other map.
During many surveys of Ireland's border I discovered that it is often perforated. Gates are set in hedgerows for the convenience of farmers, stepping stones and community-built bridges span rivers, walkers’ routes and muddy by-ways go wherever they please. These kinds of connections have always been there, although I think it is fair to say that their numbers have increased during the Peace Process. Roads blocked or cratered during the Troubles are being re-connected at a rate too fast for the Ordnance Survey to keep up with. On the local level cross-border movement is quietly happening, unchecked and often unmapped, until now.
This map attempts to throw the borderline in perpendicular, showing it as a place of connection rather than division.
Resumo:
Mathematical modelling has become an essential tool in the design of modern catalytic systems. Emissions legislation is becoming increasingly stringent, and so mathematical models of aftertreatment systems must become more accurate in order to provide confidence that a catalyst will convert pollutants over the required range of conditions.
Automotive catalytic converter models contain several sub-models that represent processes such as mass and heat transfer, and the rates at which the reactions proceed on the surface of the precious metal. Of these sub-models, the prediction of the surface reaction rates is by far the most challenging due to the complexity of the reaction system and the large number of gas species involved. The reaction rate sub-model uses global reaction kinetics to describe the surface reaction rate of the gas species and is based on the Langmuir Hinshelwood equation further developed by Voltz et al. [1] The reactions can be modelled using the pre-exponential and activation energies of the Arrhenius equations and the inhibition terms.
The reaction kinetic parameters of aftertreatment models are found from experimental data, where a measured light-off curve is compared against a predicted curve produced by a mathematical model. The kinetic parameters are usually manually tuned to minimize the error between the measured and predicted data. This process is most commonly long, laborious and prone to misinterpretation due to the large number of parameters and the risk of multiple sets of parameters giving acceptable fits. Moreover, the number of coefficients increases greatly with the number of reactions. Therefore, with the growing number of reactions, the task of manually tuning the coefficients is becoming increasingly challenging.
In the presented work, the authors have developed and implemented a multi-objective genetic algorithm to automatically optimize reaction parameters in AxiSuite®, [2] a commercial aftertreatment model. The genetic algorithm was developed and expanded from the code presented by Michalewicz et al. [3] and was linked to AxiSuite using the Simulink add-on for Matlab.
The default kinetic values stored within the AxiSuite model were used to generate a series of light-off curves under rich conditions for a number of gas species, including CO, NO, C3H8 and C3H6. These light-off curves were used to generate an objective function.
This objective function was used to generate a measure of fit for the kinetic parameters. The multi-objective genetic algorithm was subsequently used to search between specified limits to attempt to match the objective function. In total the pre-exponential factors and activation energies of ten reactions were simultaneously optimized.
The results reported here demonstrate that, given accurate experimental data, the optimization algorithm is successful and robust in defining the correct kinetic parameters of a global kinetic model describing aftertreatment processes.