106 resultados para Potassium chloride
Resumo:
The determination of chloride impurities in water miscible and water immiscible ionic liquids has been explored using ion chromatography (IC) and cathodic stripping voltammetry (CSV). This paper shows the first quantification of chloride in [NTf2](-) based ILs. The parameters investigated include sample preparation, solvent effect, sample stability, and limit of quantification (LOQ).
Resumo:
The occurrence of the fuel oxygenate methyl tert-butyl ether (MTBE) in the environment has received considerable scientific attention. The pollutant is frequently found in the groundwater due to leaking of underground storage tanks or pipelines. Concentrations of more than several mg/L MTBE were detected in groundwater at several places in the US and Germany in the last few years. In situ chemical oxidation is a promising treatment method for MTBE-contaminated plumes. This research investigated the reaction kinetics for the oxidation of MTBE by permanganate. Batch tests demonstrated that the oxidation of MTBE by permanganate is second order overall and first order individually with respect to permanganate and MTBE. The second-order rate constant was 1.426 x 10(-6) L/mg/h. The influence of pH on the reaction rate was demonstrated to have no significant effect. However, the rate of MTBE oxidation by potassium permanganate is 2-3 orders of magnitude lower than of other advanced oxidation processes. The slower rates of MTBE oxidation by permanganate limit the applicability of this process for rapid MTBE cleanup strategies. However, permanganate oxidation of MTBE has potential for passive oxidation risk management strategies. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Silver thin films were modified using a novel plasma modification process for the development of thin-film silver-silver chloride reference electrodes. The surface, physical, and electrochemical properties of these electrodes were investigated by atomic force microscopy, thickness and resistivity measurement techniques, as well as impedance spectroscopy and potentiometry. After plasma treatment, thin-film growth was observed and the electrodes, in general, exhibited low interface impedance and a roughened surface. Evidence of a complex surface reorganization was found. Correlating plasma conditions with film properties suggested that increasing pressure and exposure duration increased species availability, therefore governing the reaction rates, while input power appeared to influence the type of surface chemical reactions. Results also indicated that Ar/Cl-2 mixtures should be employed rather than pure chlorine plasmas. (C) 2002 The Electrochemical Society.
Resumo:
We previously showed inhibition of Kir2 inward rectifier K+ channels expressed in Xenopus oocytes by the mitochondrial agents carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and sodium azide. Mutagenesis studies suggested that FCCP may act via phosphatidylinositol 4,5-bisphosphate (PIP2) depletion. This mechanism could be reversible in intact cells but not in excised membrane patches which preclude PIP2 regeneration. This prediction was tested by investigating the reversibility of the inhibition of Kir2.2 by FCCP in intact cells and excised patches. We also investigated the effect of FCCP on Kir2.2 expressed in human embryonic kidney (HEK) cells. Kir2.2 current, expressed in Xenopus oocytes, increased in inside-out patches from FCCP-treated and untreated oocytes. The fraction of total current that increased was 0.79?±?0.05 in control and 0.89?±?0.03 in 10 µM FCCP-treated (P?>?.05). Following “run-up,” Kir2.2 current was re-inhibited by “cramming” inside-out patches into oocytes. Therefore, run-up reflected not reversal of inhibition by FCCP, but washout of an endogenous inhibitor. Kir2.2 current recovered in intact oocytes within 26.5 h of FCCP removal. Injection of oocytes with 0.1 U apyrase completely depleted ATP (P?<?.001) but did not inhibit Kir2.2 and inhibited Kir2.1 by 35% (P?<?.05). FCCP only partially reduced [ATP] (P?<?.001), despite inhibiting Kir2.2 by 75% (P?<?.01) but not Kir2.1. FCCP inhibited Kir2.2 expressed in HEK cells. The recovery of Kir2.2 from inhibition by FCCP requires intracellular components, but direct depletion of ATP does not reproduce the differential inhibitory effect of FCCP. Inhibition of Kir2.2 by FCCP is not unique to Xenopus oocytes. J. Cell. Physiol. 219: 8–13, 2009. © 2008 Wiley-Liss, Inc.
Resumo:
The kinetics of the acid-catalysed hydrolysis of cellobiose in the ionic liquid 1-ethyl-3-methylimidazolium chloride, [C(2)mim]Cl, was studied as a model for general lignocellulosic biomass hydrolysis in ionic liquid systems. The results show that the rate of the two competing reactions, polysaccharide hydrolysis and sugar decomposition, vary with acid strength, and that for acids with an aqueous pK(a) below approximately zero, the hydrolysis reaction is significantly faster than the degradation of glucose, thus allowing hydrolysis to be performed with a high selectivity in glucose. In tests with soluble cellulose, hemicellulose (xylan), and lignocellulosic biomass (Miscanthus grass), comparable hydrolysis rates were observed with bond scission occurring randomly along the biopolymer chains, in contrast to end-group hydrolysis observed with aqueous acids.
Resumo:
Ionic liquids are gaining attention as new solvents within the green chemistry community; however this attention has quickly outstripped current environmental and toxicological data available. In the present communication, we establish the use of Caenorhabditis elegans as a model organism for inexpensively and quickly exploring toxicological effects of 1-alkyl-3-methylimidazolium chloride ionic liquids.
Resumo:
Ammonium chloride/mercuric chloride mixtures (molar ratio 2: 1) react at 350degreesC with Monel (Cu68Ni32) to yield (NH4)NiCl3 and mercury and copper amalgam, respectively. With larger amounts of (NH4)Cl in the reaction mixture, dark green (NH4)(2)(NH3)(x)[Ni(NH3)(2)Cl-4] (x approximate to 0.77) (1) is also formed as a main product. Light blue crystals of the mixed-valent copper(I,II) chloride (NH4)(5)Cl-5[CuCl2][CuCl4] (2) were obtained as a minor byproduct from a 4:1 reaction mixture. The crystal structures were determined from single crystal X-ray data; (1): tetragonal, I4/mmm, a = 770.9(1), e = 794.2(2) pm, 190 reflections, R-1 = 0.0263; (2): tetragonal, I4/mcm, a = 874.8(1), c = 2329.2(3) pm, 451 reflections, R-1 = 0.0736. In (1) Ni2+ resides in trans-[Ni(NH3)(2)Cl-4](2-) octahedra, and in (2) copper(l) is linearly two-coordinated in ECUC121- and copper(II) resides in a flattened tetrahedron [CuCl4](2-) with a tetrahedricity of 89%. (C) 2001 Elsevier Science.