98 resultados para Porous bodies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing interest in the application of electrode-based measurements for monitoring microbial processes in the Earth using biogeophysical methods. In this study, reactive electrode measurements were combined to electrical geophysical measurements during microbial sulfate reduction occurring in a column of silica beads saturated with natural river water. Electrodic potential (EP), self potential (SP) and complex conductivity signals were recorded using a dual electrode design (Ag/AgCl metal as sensing/EP electrode, Ag/AgCl metal in KCl gel as reference/SP electrode). Open-circuit potentials, representing the tendency for electrochemical reactions to occur on the electrode surfaces, were recorded between sensing/EP electrode and reference/SP electrode and showed significant spatiotemporal variability associated with microbial activity. The dual electrode design isolates the microbial driven sulfide reactions to the sensing electrode and permits removal of any SP signal from the EP measurement. Based on the known sensitivity of a Ag electrode to dissolved sulfide, we interpret EP signals exceeding 550 mV recorded in this experiment in terms of bisulfide (HS-) concentration near multiple sensing electrodes. Complex conductivity measurements capture an imaginary conductivity (s?) signal interpreted as the response of microbial growth and biomass formation in the column. Our results suggest that the implementation of multipurpose electrodes, combining reactive measurements with electrical geophysical measurements, could improve efforts to monitor microbial processes in the Earth using electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present the synthesis of nanometre sized silver particles which have been trapped within porous substrates; poly( styrene-divinylbenzene) beads and silica aerogels. This is the first time that supercritical carbon dioxide has been used to impregnate such porous materials with silver coordination complexes. In this paper we demonstrate that control over the resultant nanoparticles with respect to size, loading and distribution in the support material has been achieved by simple choice of the precursor complex. The solubility of the precursor complexes in the supercritical solvent is shown to be one of the key parameters in determining the size of the nanoparticles, their distribution and their homogeneity within the support matrix. Moreover, we demonstrate that the same methodology can be applied to two very different substrate materials. In the particular case of aerogels, conventional organic solvents could not be used to prepare nanoparticles because the surface tension of the solvent would lead to fracturing of the aerogel structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geophysics may assist scent dogs and divers in the search of water bodies for human and animal remains, contraband, weapons and explosives by surveying large areas rapidly and identifying targets or environmental hazards. The most commonly applied methods are described and evaluated for forensic searches. Seismic reflection or refraction and CHIRPS are useful for deep, openwater bodies and identifying large targets, yet limited in streams and ponds. The use of ground penetrating radar (GPR) onwater(WPR) is of limited use in deepwaters (over 20 m) but is advantageous in the search for non-metallic targets in small ditches and ponds. Largemetal or metal-bearing targets can be successfully imaged in deep waters by using towfish magnetometers: in shallow waters such a towfish cannot be used, so a non-metalliferous boat can carry a terrestrial magnetometer. Each device has its uses, depending on the target and location: unknown target make-up (e.g. a homicide victimwith or without a metal object) may be best located using a range ofmethods (the multi-proxy approach), depending on water depth. Geophysics may not definitively find the target, but can provide areas for elimination and detailed search by dogs and divers, saving time and effort.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional mathematical model for evaluating the simultaneous heat and moisture migration in porous building materials was proposed. Vapor content and temperature were chosen as the principal driving potentials. The numerical solution was based on the control volume finite difference technique with fully implicit scheme in time. Two validation experiments were developed in this study. The evolution of transient moisture distributions in both one-dimensional and two-dimensional cases was measured. A comparison between experimental results and those obtained by the numerical model proves that they are fully consistent with each other. The model can be easily integrated into a whole building heat, air and moisture transfer model. Another main advantage of the present numerical method lies in the fact that the required moisture transport properties are comparatively simple and easy to determine.