77 resultados para Polyphenol Oxidase
Resumo:
Human induced pluripotent stem (iPS) cell-derived endothelial cells (ECs) hold clear potential for therapeutic angiogenesis as a novel strategy for ischaemic disease. Recently, we have developed a novel method for direct reprogramming of partial iPS (PiPS) cells, which unlike iPS cells, are generated before pluripotency so do not form tumours, and may be differentiated into ECs with characteristic morphology and pro-angiogenic actions. Our previous work showed that PiPS-derived ECs are capable of forming vascular-like tubes both in vitro and in vivo and promoting re-endothelialisation of ischemic tissue, with greater effectiveness versus mature ECs.
Interestingly, our preliminary data demonstrate that Nox NADPH oxidases, which are reported to influence stem cell function, are progressively induced during PiPs/PiPS-EC differentiation and in response to hypoxia, with Nox4 demonstrating highest expression. As this isoform is an established regulator of angiogenesis, we hypothesize that Nox4 plays a key role in modulating PiPS-EC generation and angiogenic function.
The aim of this project is therefore to investigate: (1) the specific role of Nox4 in direct reprogramming of PiPS cells and differentiation to PiPS-ECs; (2) whether genetic manipulation of Nox4 influences in vitro function of PiPs-ECs and their ability to promote in vivo angiogenesis. This will be achieved by employing established in vitro functional assays and an experimental model of hindlimb ischaemia with assessment of relevant end-points. Identification of a key role for Nox4 in regulating PiPS-EC generation/function may inform selective targeting of this isoform to enhance the efficiency of PiPS-EC differentiation and their capacity to treat ischemic disease.
Resumo:
Introduction. Endothelial colony-forming cells (ECFCs) hold great cytotherapeutic potential for ischaemic disease. Emerging evidence supports a key role for NADPH oxidases in underlying angiogenic processes of these and other endothelial cells. Aims. To study the influence of Nox NADPH oxidases on the pro-angiogenic function of ECFCs. Methods. Human ECFCs isolated from umbilical cord blood were treated with pro-oxidant PMA and assessed in vitro, both under basal conditions and after siRNA knockdown of Nox4, a key endothelial NADPH oxidase isoform, alongside primary mature human aortic endothelial cells (HAoECs) for comparison, using an established scratch-wound assay as the functional end-point. Results. PMA (500nM for 8h) increased cell migration (control 18.6±2.8, PMA 32.7±6.6% wound closure; n=6, P<0.05) in a superoxide-dependent manner, as indicated by attenuation of this effect in the presence of PEG-SOD. Although HAoEC migration in response to PMA also tended to increase, this did not reach statistical significance. Notably, cell migration at 16h was reduced by Nox4 knockdown in ECFCs (control siRNA 53.4±3.5, Nox4 siRNA 35.1±4.9% closure; n=3, P<0.05), but not in HAoECs, whilst the pro-migratory effect of PMA in ECFCs was potentiated after Nox4 knockdown (control siRNA 53.4±3.5, +PMA 61.5±3.2% closure; n=3, P=NS; Nox4 siRNA 35.1±4.9, +PMA 53.0±4.9% closure; n=3, P<0.05). Conclusion. ECFC migration is enhanced by low concentrations of superoxide, to a greater extent compared to mature endothelial cells, and appears to be at least partly dependent upon NADPH oxidase, including a specific role for Nox4. Although, the precise contribution of endothelial Nox NADPH oxidases isoforms remains to be determined, it is clear that these findings may have significant implications for potential ECFC-based therapies for ischaemic disease, which is associated with an oxidative microenvironment.
Resumo:
OBJECTIVES: There is previous epidemiological evidence that intake of polyphenol-rich foods has been associated with reduced cardiovascular disease risk. We aimed to investigate the effect of increasing dietary polyphenol intake on microvascular function in hypertensive participants.
METHODS: All participants completed a 4-week run-in phase, consuming <2 portions of fruit and vegetables (F&V) daily and avoiding berries and dark chocolate. Subjects were then randomised to continue with the low-polyphenol diet for 8 weeks or to consume a high-polyphenol diet of six portions F&V (including one portion of berries/day and 50 g of dark chocolate). Endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside) vasodilator responses were assessed by venous occlusion plethysmography. Compliance with the intervention was measured using food diaries and biochemical markers.
RESULTS: Final analysis of the primary endpoint was conducted on 92 participants. Between-group comparison of change in maximum % response to ACh revealed a significant improvement in the high-polyphenol group (p=0.02). There was a significantly larger increase in vitamin C, carotenoids and epicatechin in the high-polyphenol group (between-group difference p<0.001; p<0.001; p=0.008, respectively).
CONCLUSIONS: This study has shown that increasing the polyphenol content of the diet via consumption of F&V, berries and dark chocolate results in a significant improvement in an established marker of cardiovascular risk in hypertensive participants.
Resumo:
In human neutrophils, beta2 integrin engagement mediated a decrease in GTP-bound Rac1 and Rac2. Pretreatment of neutrophils with LY294002 or PP1 (inhibiting phosphatidylinositol 3-kinase (PI 3-kinase) and Src kinases, respectively) partly reversed the beta2 integrin-induced down-regulation of Rac activities. In contrast, beta2 integrins induced stimulation of Cdc42 that was independent of Src family members. The PI 3-kinase dependency of beta2 integrin-mediated decrease in GTP-bound Rac could be explained by an enhanced Rac-GAP activity, since this activity was blocked by LY204002, whereas PP1 only had a minor effect. The fact that only Rac1 but not Rac2 (the dominating Rac) redistributed to the detergent-insoluble fraction and that it was independent of GTP loading excludes the possibility that down-regulation of Rac activities was due to depletion of GTP-bound Rac from the detergent-soluble fraction. The beta2 integrin-triggered relocalization of Rac1 to the cytoskeleton was enabled by a PI 3-kinase-induced dissociation of Rac1 from LyGDI. The dissociations of Rac1 and Rac2 from LyGDI also explained the PI 3-kinase-dependent translocations of Rac GTPases to the plasma membrane. However, these accumulations of Rac in the membrane, as well as that of p47phox and p67phox, were also regulated by Src tyrosine kinases. Inasmuch as Rac GTPases are part of the NADPH oxidase and the respiratory burst is elicited in neutrophils adherent by beta2 integrins, our results indicate that activation of the NADPH oxidase does not depend on the levels of Rac-GTP but instead requires a beta2 integrin-induced targeting of the Rac GTPases as well as p47phox and p67phox to the plasma membrane.
Resumo:
Objective: This study investigated whether differences exist in atherogen-induced migratory behaviors and basal antioxidant enzyme capacity of vascular smooth muscle cells (VSMC) from human coronary (CA) and internal mammary (IMA) arteries. Methods: Migration experiments were performed using the Dunn chemotaxis chamber. The prooxidant [NAD(P)H oxidase] and antioxidant [NOS, superoxide dismutase, catalase and glutathione peroxidase] enzyme activities were determined by specific assays. Results: Chemotaxis experiments revealed that while both sets of VSMC migrated towards platelet-derived growth factor-BB (1-50 ng/ml) and angiotensin II (1-50 nM), neither oxidized-LDL (ox-LDL, 25-100 ng/ml) nor native LDL (100 ng/ml) affected chemotaxis in IMA VSMC. However, high dose ox-LDL produced significant chemotaxis in CAVSMC that was inhibited by pravastatin (100 nM), mevastatin (10 nM), losartan (10 nM), enalapril (1 micro.M), and MnTBAP (a free radical scavenger, 50 micro.M). Microinjection experiments with isoprenoids i.e. geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) showed distinct involvement of small GTPases in atherogeninduced VSMC migration. Significant increases in antioxidant enzyme activities and nitrite production along with marked decreases in NAD(P)H oxidase activity and superoxide levels were determined in IMA versus CA VSMC. Conclusions: Enhanced intrinsic antioxidant capacity may confer on IMAVSMC resistance to migration against atherogenic agents. Drugs that regulate ox-LDL or angiotensin II levels also exert antimigratory effects.
Resumo:
STUDY OBJECTIVES: To investigate the role of a monoamine A oxidase promoter polymorphism in sleep disruption in Alzheimer's disease (AD). DESIGN: A case-control association analysis. SETTING: Sleep disturbance in AD is common, is extremely stressful for caregivers, and increases the risk of institutionalisation. It remains unclear why only some patients develop sleep disturbance; neuropathologic changes of AD are not typically seen in the areas of the brain responsible for sleep. We hypothesized that the risk of sleep disturbance is, at least in part, influenced by the availability of serotonin used for melatonin synthesis secondary to polymorphic variation at the enzyme monoamine oxidase A (MAO-A). PATIENTS: Patients with AD diagnosed according to standard criteria. INTERVENTIONS: Data were collected using the Sleep domain of the Neuropsychiatric Inventory with Caregiver Distress. Patients' cognition and function were assessed using the Mini-Mental State Examination and the Functional Assessment Staging. Genotyping of apolipoprotein E (APOE) and of the 30 bp variable number tandem repeat of the MAO-A promoter was by standard methods. MEASUREMENTS AND RESULTS: Of 426 patients surveyed, 54% experienced sleep disturbance. We found that the high-activity 4-repeat allele of the MAO-A VNTR promoter polymorphism confers increased susceptibility to sleep disturbance (p = .008). A quantitative sleep disturbance score was significantly higher in the patients possessing MAO-A 4-repeat allele genotypes. APOE had no influence on the development of an altered sleep phenotype. CONCLUSIONS: We conclude that sleep disturbance in AD is common and distressing and is associated with genetic variation at MAO-A.
Resumo:
There is currently a shifting focus towards finding natural compounds that may prevent or treat cancer, due to the problems that exist with current chemotherapeutic regimens. The fruit of the Punica granatum (pomegranate) contains hundreds of phytochemicals and pomegranate extracts have recently been shown to exhibit antioxidant properties, thought to be due to the action of ellagic acid, the main polyphenol in pomegranate. In this mini review the effects of pomegranate extracts and ellagic acid on the proliferation of prostate cancer cells and their future potential are discussed.
Resumo:
Samples were taken at each stage of brewing (malt, milling, mashing, wort separation, hop addition, boiling, whirlpool, dilution, fermentation, warm rest, chill-lagering, beer filtration, carbonation and bottling, pasteurization, and storage). The level of antioxidant activity of unfractionated, low-molecular-mass (LMM) and high-molecular-mass (HMM) fractions was measured by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfortic acid) radical cation (ABTS(.+)) and ferric-reducing antioxidant power (FRAP) procedures. Polyphenol levels were assessed by HPLC. The LMM fraction ( 0.001) in catechin and ferulic acid levels. Increases in antioxidant activity levels were observed after mashing, boiling, fermentation, chill-lagering, and pasteurization, in line with previous studies on lager. Additionally, increases in the level of antioxidant activity occurred after wort separation and carbonation and bottling and were accompanied by increases in levels of most monitored polyphenols. Data from the ABTS(.-) and FRAP assays indicated that the compounds contributing to the levels of antioxidant activity responded differently in the two procedures. Levels of ferulic, vanillic, and chlorogenic acids and catechin accounted for 45-61% of the variation in antioxidant activity levels.
Resumo:
AIMS
To examine the allelic variation of three enzymes involved in 6-mercaptopurine/azathioprine (6-MP/AZA) metabolism and evaluate the in?uence of these polymorphisms on toxicity, haematological parameters and metabolite levels in patients with acute lymphoblastic leukaemia (ALL) or in?ammatory bowel disease (IBD).
METHODS
Clinical data and blood samples were collected from 19 ALL paediatric patients and 35 IBD patients who were receiving 6-MP/AZA therapy. All patients were screened for seven genetic polymorphisms in three enzymes involved in mercaptopurine metabolism [xanthine oxidase, inosine triphosphatase (C94?A and IVS2+21A?C) and thiopurine methyltransferase]. Erythrocyte and plasma metabolite concentrations were also determined. The associations between the various genotypes and myelotoxicity, haematological parameters and metabolite concentrations were determined.
RESULTS
Thiopurine methyltransferase variant alleles were associated with a preferential metabolism away from 6-methylmercaptopurine nucleotides (P = 0.008 in ALL patients,P = 0.038 in IBD patients) favouring 6-thioguanine nucleotides (6-TGNs) (P = 0.021 in ALL patients). Interestingly, carriers of inosine triphosphatase IVS2+21A?C variants among ALL and IBD patients had signi?cantly higher concentrations of the active cytotoxic metabolites, 6-TGNs (P = 0.008 in ALL patients,P = 0.047 in IBD patients). The study con?rmed the association of thiopurine methyltransferase heterozygosity with leucopenia and neutropenia in ALL patients and reported a signi?cant association between inosine triphosphatase IVS2+21A?C variants with thrombocytopenia (P = 0.012).
CONCLUSIONS
Pharmacogenetic polymorphisms in the 6-MP pathway may help identify patients at risk for associated toxicities and may serve as a guide for dose
individualization.
Resumo:
Cells subjected to various forms of stress have been shown to induce bystander responses in nontargeted cells, thus extending the stress response to a larger population. However, the mechanism(s) of bystander responses remains to be clearly identified, particularly for photodynamic stress. Oxidative stress and cell viability were studied on the spatial and temporal levels after photodynamic targeting of a subpopulation of EMT6 murine mammary cancer cells in a multiwell plate by computerized time-lapse fluorescence microscopy. In the targeted population a dose-dependent loss of cell viability was observed in accordance with increased oxidative stress. This was accompanied by increased oxidative stress in bystander populations but on different time scales, reaching a maximum more rapidly in targeted cells. Treatment with extracellular catalase, or the NADPH oxidase inhibitor diphenyleneiodinium, decreased production of reactive oxygen species (ROS) in both populations. These effects are ascribed to photodynamic activation of NADPH-oxidase in the targeted cells, resulting in a rapid burst of ROS formation with hydrogen peroxide acting as the signaling molecule responsible for initiation of these photodynamic bystander responses. The consequences of increased oxidative stress in bystander cells should be considered in the overall framework of photodynamic stress.
Resumo:
NO (nitric oxide) can affect mitochondrial function by interacting with the cytochrome c oxidase (complex IV) of the electron transport chain in a manner that is reversible and in competition with oxygen. Concentrations of NO too low to inhibit respiration can trigger cell defence response mechanisms involving reactive oxygen species and various signalling molecules such as nuclear factor kappa B and AMP kinase. Inhibition of mitochondrial respiration by NO at low oxygen concentrations can cause so-called metabolic hypoxia and divert oxygen towards other oxygen-dependent systems. Such a diversion reactivates prolyl hydroxylases and thus accounts for the prevention by NO of the stabilization of hypoxia-inducible transcription factor. In certain circumstances NO interacts with superoxide radical to form peroxynitrite, which can affect the action of key enzymes, such as mitochondrial complex I, by S-nitrosation. This chapter discusses the physiological and pathophysiological implications of the interactions of NO with the cytochrome c oxidase.
Resumo:
Nitochondrial NADH:ubiquinone-reductase (Complex I) catalyzes proton translocation into inside-out submitochondrial particles. Here we describe a method for determining the stoichiometric ratio (H) over right arrow (+)/2e(-) (n) for the coupled reaction of NADH oxidation by the quinone accepters. Comparison of the initial rates of NADH oxidation and alkalinization of the surrounding medium after addition of small amounts of NADH to coupled particles in the presence of Q(1) gives the value of n = 4. Thermally induced deactivation of Complex I [1, 2] results in complete inhibition of the NADH oxidase reaction but only partial inhibition of the NADH:Q(1)-reductase reaction. N-Ethylmaleimide (NEM) prevents reactivation and thus completely blocks the thermally deactivated enzyme. The residual NADH:Q(1)-reductase activity of the deactivated, NEM-treated enzyme is shown to be coupled with the transmembraneous proton translocation (n = 4). Thus, thermally induced deactivation of Complex 1 as well as specific inhibitors of the endogenous ubiquinone reduction (rotenone, piericidin A) do not inhibit the proton translocating activity of the enzyme.