40 resultados para Polynomial approximation
Resumo:
This paper presents new results for the (partial) maximum a posteriori (MAP) problem in Bayesian networks, which is the problem of querying the most probable state configuration of some of the network variables given evidence. It is demonstrated that the problem remains hard even in networks with very simple topology, such as binary polytrees and simple trees (including the Naive Bayes structure), which extends previous complexity results. Furthermore, a Fully Polynomial Time Approximation Scheme for MAP in networks with bounded treewidth and bounded number of states per variable is developed. Approximation schemes were thought to be impossible, but here it is shown otherwise under the assumptions just mentioned, which are adopted in most applications.
Resumo:
We present a new algorithm for exactly solving decision making problems represented as influence diagrams. We do not require the usual assumptions of no forgetting and regularity; this allows us to solve problems with simultaneous decisions and limited information. The algorithm is empirically shown to outperform a state-of-the-art algorithm on randomly generated problems of up to 150 variables and 10^64 solutions. We show that the problem is NP-hard even if the underlying graph structure of the problem has small treewidth and the variables take on a bounded number of states, but that a fully polynomial time approximation scheme exists for these cases. Moreover, we show that the bound on the number of states is a necessary condition for any efficient approximation scheme.
Resumo:
Influence diagrams allow for intuitive and yet precise description of complex situations involving decision making under uncertainty. Unfortunately, most of the problems described by influence diagrams are hard to solve. In this paper we discuss the complexity of approximately solving influence diagrams. We do not assume no-forgetting or regularity, which makes the class of problems we address very broad. Remarkably, we show that when both the treewidth and the cardinality of the variables are bounded the problem admits a fully polynomial-time approximation scheme.
Resumo:
This paper presents new results for the (partial) maximum a posteriori (MAP) problem in Bayesian networks, which is the problem of querying the most probable state configuration of some of the network variables given evidence. First, it is demonstrated that the problem remains hard even in networks with very simple topology, such as binary polytrees and simple trees (including the Naive Bayes structure). Such proofs extend previous complexity results for the problem. Inapproximability results are also derived in the case of trees if the number of states per variable is not bounded. Although the problem is shown to be hard and inapproximable even in very simple scenarios, a new exact algorithm is described that is empirically fast in networks of bounded treewidth and bounded number of states per variable. The same algorithm is used as basis of a Fully Polynomial Time Approximation Scheme for MAP under such assumptions. Approximation schemes were generally thought to be impossible for this problem, but we show otherwise for classes of networks that are important in practice. The algorithms are extensively tested using some well-known networks as well as random generated cases to show their effectiveness.
Resumo:
We present a homological characterisation of those chain complexes of modules over a Laurent polynomial ring in several indeterminates which are finitely dominated over the ground ring (that is, are a retract up to homotopy of a bounded complex of finitely generated free modules). The main tools, which we develop in the paper, are a non-standard totalisation construction for multi-complexes based on truncated products, and a high-dimensional mapping torus construction employing a theory of cubical diagrams that commute up to specified coherent homotopies.
Resumo:
Communicating answer set programming is a framework to represent and reason about the combined knowledge of multiple agents using the idea of stable models. The semantics and expressiveness of this framework crucially depends on the nature of the communication mechanism that is adopted. The communication mechanism we introduce in this paper allows us to focus on a sequence of programs, where each program in the sequence may successively eliminate some of the remaining models. The underlying intuition is that of leaders and followers: each agent’s decisions are limited by what its leaders have previously decided. We show that extending answer set programs in this way allows us to capture the entire polynomial hierarchy.
Resumo:
Passive intermodulation (PIM) often limits the performance of communication systems, particularly in the presence of multiple carriers. Since the origins of the apparently multiple physical sources of nonlinearity causing PIM in distributed circuits are not fully understood, the behavioural models are frequently employed to describe the process of PIM generation. In this paper, a memoryless nonlinear polynomial model, capable of predicting high-order multi-carrier intermodulation products, is deduced from the third-order two-tone PIM measurements on a microstrip transmission line with distributed nonlinearity. The analytical model of passive distributed nonlinearity is implemented in Keysight Technology’s ADS simulator to evaluate the adjacent band power ratio for three-tone signals. The obtained results suggest that the costly multi-carrier test setups can possibly be replaced by a simulation tool based on the properly retrieved nonlinear polynomial model.
Resumo:
Using a different approach to that of Popa, we arrive at an alternative definition
of the positive approximation property for order complete Banach lattices.
Some results associated with this new approach may be of independent interest. We
also prove a Banach lattice analogue of an old characterization, due to Palmer, of
the metric approximation property in terms of the continuous bidual of the ideal of
approximable operators.