39 resultados para Plauto, ca 254-184 a.C.
Resumo:
Fasciolosis is a parasitic infection by the liver fluke Fasciola hepatica, which costs the global agricultural community over US $2 billion per year. Its prevalence is rising due to factors such as climate change and drug resistance. ATP-dependent membrane transporters are considered good potential drug targets as they are essential for cellular processes and are in an exposed, accessible position in the cell. Immunolocalisation studies demonstrated that a plasma membrane calcium ATPase (PMCA) was localised to the parenchymal tissue in F. hepatica. The coding sequence for a F. hepatica PMCA (FhPMCA) has been obtained. This sequence encodes a 1,163 amino acid protein which contains motifs which are commonly conserved in PMCAs. Molecular modelling predicted that the protein has 10 transmembrane segments which include a potential calcium ion binding site and phosphorylation motif. FhPMCA interacts with the calmodulin-like protein FhCaM1, but not the related proteins FhCaM2 or FhCaM3, in a calcium-ion dependent manner. This interaction occurs through a region in the C-terminal region of FhPMCA which most likely adopts an a-helical conformation. When FhPMCA was heterologously expressed in a budding yeast strain deleted for its PMCA (Pmc1p), it restored viability. Microsomes prepared from these yeast cells had calcium ion stimulated ATPase activity which was inhibited by the known PMCA inhibitors, bisphenol and eosin. The potential of FhPMCA as a new drug target is discussed.
Resumo:
We have developed a method, based on the use of B-spline basis sets and model potentials, for determining properties of systems with two or three electrons outside a polarizable closed-shell core. It is applied to the calculation of the electron affinity of Ca and the resulting value of 17.7 meV is in excellent agreement with the most recent experiments. It is found that the dielectronic core-valence interaction reduces the electron affinity by 39.5 meV.
Resumo:
Objective: Pharmacological profiling of store-operated Ca(2+) entry (SOCE) and molecular profiling of ORAI and TRPC expression in arterioles.
Methods: Fura-2 based microfluorimetry was used to assess CPA-induced SOCE in rat retinal arteriolar myocytes. Arteriolar ORAI and TRP transcript expression were screened using RT-PCR.
Results: SKF96365 and LOE908 blocked SOCE (IC(50) s of 1.2µM and 1.4µM, respectively). Gd(3+) and La(3+) potently inhibited SOCE (IC(50) s of 21nM and 42nM, respectively), but Ni(2+) showed lower potency (IC(50) = 11.6µM). 2-aminoethyldiphenyl borate (2APB) inhibited SOCE (IC(50) = 3.7µM) but enhanced basal influx (>100µM). Verapamil and nifedipine had no effect at concentrations that inhibit L-type Ca(2+) channels, but diltiazem inhibited SOCE by approximately 40% (=0.1µM). RT-PCR demonstrated transcript expression for ORAI 1, 2 and 3, and TRPC1, 3, 4 and 7. Transcripts for TRPV1 and 2, which are activated by 2APB, were also expressed.
Conclusion: The pharmacological profile of SOCE in retinal arteriolar smooth muscle appears unique when compared to other vascular tissues. This suggests that the molecular mechanisms underlying SOCE can differ, even in closely related tissues. Taken together, the pharmacological and molecular data are most consistent with involvement of TRPC1 in SOCE, although involvement of ORAI or other TRPC channels cannot be excluded. © 2012 John Wiley & Sons Ltd.
Resumo:
Background and Purpose: Ca(2+) imaging reveals subcellular Ca(2+) sparks and global Ca(2+) waves/oscillations in vascular smooth muscle. It is well established that Ca(2+) sparks can relax arteries, but we have previously reported that sparks can summate to generate Ca(2+) waves/oscillations in unpressurized retinal arterioles, leading to constriction. We have extended these studies to test the functional significance of Ca(2+) sparks in the generation of myogenic tone in pressurized arterioles.
Experimental Approach: Isolated retinal arterioles (25-40 μm external diameter) were pressurized to 70 mmHg, leading to active constriction. Ca(2+) signals were imaged from arteriolar smooth muscle in the same vessels using Fluo4 and confocal laser microscopy.
Key Results: Tone development was associated with an increased frequency of Ca(2+) sparks and oscillations. Vasomotion was observed in 40% of arterioles and was associated with synchronization of Ca(2+) oscillations, quantifiable as an increased cross-correlation coefficient. Inhibition of Ca(2+) sparks with ryanodine, tetracaine, cyclopiazonic acid or nimodipine, or following removal of extracellular Ca(2+) , resulted in arteriolar relaxation. Cyclopiazonic acid-induced dilatation was associated with decreased Ca(2+) sparks and oscillations but with a sustained rise in the mean global cytoplasmic [Ca(2+) ] ([Ca(2+) ]c ), as measured using Fura2 and microfluorimetry.
Conclusions and Implications: This study provides direct evidence that Ca(2+) sparks can play an excitatory role in pressurized arterioles, promoting myogenic tone. This contrasts with the generally accepted model in which sparks promote relaxation of vascular smooth muscle. Changes in vessel tone in the presence of cyclopiazonic acid correlated more closely with changes in spark and oscillation frequency than global [Ca(2+) ]c , underlining the importance of frequency-modulated signalling in vascular smooth muscle.
Resumo:
Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our early results. SOFIA (+FORCAST [1]) mid- to far-IR images and spectroscopy (~5-35 μm) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h≈1.18 AU). Dust characteristics, identified through the 10 μm silicate emission feature and its strength [2], as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 μm, and near 16, 19, 23.5, 27.5, and 33 μm are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) [3,4,5] and C/2001 Q4 (NEAT) [6]) to large and/or compact grains (e.g., C/2007 N4 (Lulin) [7] and C/2006 P1 (McNaught) [8]). Measurement of the crystalline peaks in contrast to the broad 10 and 20 μm amorphous silicate features yields the cometary silicate crystalline mass fraction [9], which is a benchmark for radial transport in our protoplanetary disk [10]. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals [11]. Only SOFIA can look for cometary organics in the 5-8 μm region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h<0.4 AU, near Nov-20--Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) [12,13] suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures 4 settings: Na I, K, C2 to sample cometary organics (along with Mg I), and [O I] as a proxy for activity from water [14] (along with Si I and Fe I). State-of-the-art instruments that will also be employed include IBIS [15], which is a Fabry-Perot spectral imaging system that concurrently measures lines of Na, K, Ca II, or Fe, and ROSA (CSUN/QUB) [16], which is a rapid imager that simultaneously monitors Ca II or CN. From McMath-Pierce, the Solar-Stellar Spectrograph also will target ISON (320-900 nm, R~21,000, r_h
Resumo:
We designed a straightforward biotinylated probe using the N-terminal substrate-like region of the inhibitory site of human cystatin C as a scaffold, linked to the thiol-specific reagent diazomethylketone group as a covalent warhead (i.e. Biot-(PEG)2-Ahx-LeuValGly-DMK). The irreversible activity-based probe bound readily to cysteine cathepsins B, L, S and K. Moreover affinity labeling is sensitive since active cathepsins were detected in the nM range using an ExtrAvidin®-peroxidase conjugate for disclosure. Biot-(PEG)2-Ahx-LeuValGly-DMK allowed a slightly more pronounced labeling for cathepsin S with a compelling second-order rate constant for association (kass = 2,320,000 M−1 s−1). Labeling of the active site is dose-dependent as observed using 6-cyclohexylamine-4-piperazinyl-1,3,5-triazine-2-carbonitrile, as competitive inhibitor of cathepsins. Finally we showed that Biot-(PEG)2-Ahx-LeuValGly-DMK may be a simple and convenient tool to label secreted and intracellular active cathepsins using a myelomonocytic cell line (THP-1 cells) as model.
Resumo:
The Raman spectra of carbon nanotubes prepared by catalytic (C-CNT) and d.c. arc discharge (D-CNT) methods are reported. A previously unnoticed third-order Raman peak at ca. 4248 cm-1 was observed in the Raman spectrum of D-CNT. The Raman features of D-CNT and C-CNT are similar to those of highly oriented pyrolytic graphite (HOPG) and active carbon, respectively. The data also suggest that the increase in disorder in D-CNT compared with HOPG is due to structural defects in D-CNT. © 1997 by John Wiley & Sons, Ltd.