136 resultados para Pirieno Central
Resumo:
Ataxia with vitamin E deficiency is caused by mutations in a-tocopherol transfer protein (a-TTP) gene and it can be experimentally generated in mice by a-TTP gene inactivation (a-TTP-KO). This study compared a-tocopherol (a-T) concentrations of five brain regions and of four peripheral organs from 5 months old, male and female, wild-type (WT) and a-TTP-KO mice. All brain regions of female WT mice contained significantly higher a-T than those from WT males. a-T concentration in the cerebellum was significantly lower than that in other brain regions of WT mice. These sex and regional differences in brain a-T concentrations do not appear to be determined by a-TTP expression which was undetectable in all brain regions. All the brain regions of a-TTP-KO mice were severely depleted in a-T. The concentration of another endogenous antioxidant, total glutathione, was unaffected by gender but was decreased slightly but significantly in most brain regions of a-TTP-KO mice. The results show that both gender and the hepatic a-TTP, but not brain a-TTP gene expression are important in determining a-T concentrations within the brain. Interestingly, functional abnormality (ataxia) develops only very late in a-TTP-KO mice in spite of the severe a-tocopherol deficiency in the brain starting at an early age.
Resumo:
A pollen-based study from Tiny Lake in the Seymour-Belize Inlet Complex of central coastal British Columbia, Canada, permits an evaluation of the dynamic response of coastal temperate rainforests to postglacial climate change. Open Pinus parklands grew at the site during the early Lateglacial when the climate was cool and dry, but more humid conditions in the later phases of the Lateglacial permitted mesophytic conifers to colonise the region. Early Holocene conditions were warmer than present and a successional mosaic of Tsuga heterophylla and Alnus occurred at Tiny Lake. Climate cooling and moistening at 8740?±?70 14C a BP initiated the development of closed, late successional T. heterophylla–Cupressaceae forests, which achieved modern character after 6860?±?50 14C a BP, when a temperate and very wet climate became established. The onset of early Holocene climate cooling and moistening at Tiny Lake may have preceded change at more southern locations, including within the Seymour-Belize Inlet Complex, on a meso- to synoptic scale. This would suggest that an early Holocene intensification of the Aleutian Low pressure system was an important influence on forest dynamics in the Seymour-Belize Inlet Complex and that the study region was located near the southern extent of immediate influence of this semi-permanent air mass.
Resumo:
By integrating systematic peptidome and transcriptome studies of the defensive skin secretion of the Central American red-eyed leaf frog, Agalychnis callidryas, we have identified novel members of three previously described antimicrobial peptide families, a 27-mer dermaseptin-related peptide (designated DRP-AC4), a 33-mer adenoregulin-related peptide (designated ARP-AC1) and most unusually, a 27-mer caerin-related peptide (designated CRP-AC1). While dermaseptin and adenoregulin were originally isolated from phyllomedusine leaf frogs, the caerins, until now. had only been described in Australian frogs of the genus, Litoria. Both the dermaseptin and adenoregulin were C-terminally amidated and lacked the C-terminal tripeptide of the biosynthetic precursor sequence. In contrast, the caerin-related peptide, unlike the majority of Litoria analogs. was not C-terminally amidated. The present data emphasize the need for structural characterization of mature peptides to ensure that unexpected precursor cleavages and/or post-translational modifications do not produce mature peptides that differ in structure to those predicted from cloned biosynthetic precursor cDNA. Additionally, systematic study of the secretory peptidome can produce unexpected results such as the CRP described here that may have phylogenetic implications. It is thus of the utmost importance in the functional evaluation of novel peptides that the primary structure of the mature peptide is unequivocally established - something that is often facilitated by cloning biosynthetic precursor cDNAs but obviously not reliable using such data alone. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Background: Interleukin-17A (IL-17A) is the founding member of a novel family of inflammatory cytokines that plays a critical role in the pathogenesis of many autoimmune diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). IL-17A signals through its receptor, IL-17RA, which is expressed in many peripheral tissues; however, expression of IL-17RA in the central nervous system (CNS) and its role in CNS inflammation are not well understood. Methods: EAE was induced in C57Bl/6 mice by immunization with myelin oligodendroglial glycoprotein. IL-17RA expression in the CNS was compared between control and EAE mice using RT-PCR, in situ hybridization, and immunohistochemistry. Cell-type specific expression was examined in isolated astrocytic and microglial cell cultures. Cytokine and chemokine production was measured in IL-17A treated cultures to evaluate the functional status of IL-17RA. Results: Here we report increased IL-17RA expression in the CNS of mice with EAE, and constitutive expression of functional IL-17RA in mouse CNS tissue. Specifically, astrocytes and microglia express IL-17RA in vitro, and IL-17A treatment induces biological responses in these cells, including significant upregulation of MCP-1, MCP-5, MIP-2 and KC chemokine secretion. Exogenous IL-17A does not significantly alter the expression of IL-17RA in glial cells, suggesting that upregulation of chemokines by glial cells is due to IL-17A signaling through constitutively expressed IL-17RA. Conclusion: IL-17RA expression is significantly increased in the CNS of mice with EAE compared to healthy mice, suggesting that IL-17RA signaling in glial cells can play an important role in autoimmune inflammation of the CNS and may be a potential pathway to target for therapeutic interventions. © 2009 Sarma et al; licensee BioMed Central Ltd.