47 resultados para Physical-Mathematical Modes of Perception
Resumo:
Mode-mixing of coherent excitations of a trapped Bose-Einstein condensate is modeled using the Bogoliubov approximation. Calculations are presented for second-harmonic generation between the two lowest-lying even-parity m=0 modes in an oblate spheroidal trap. Hybridization of the modes of the breather (l=0) and surface (l=4) states leads to the formation of a Bogoliubov dark state near phase-matching resonance so that a single mode is coherently populated. Efficient harmonic generation requires a strong coupling rate, sharply-defined and well-separated frequency spectrum, and good phase matching. We find that in all three respects the quantal results are significantly different from hydrodynamic predictions. Typically the second-harmonic conversion rate is half that given by an equivalent hydrodynamic estimate.
Resumo:
Ground state energy, structure, and harmonic vibrational modes of 1-butyl-3-methylimidazolium triflate ([bmim][Tf]) clusters have been computed using an all-atom empirical potential model. Neutral and charged species have been considered up to a size (30 [bmim][Tf] pairs) well into the nanometric range. Free energy computations and thermodynamic modeling have been used to predict the equilibrium composition of the vapor phase as a function of temperature and density. The results point to a nonnegligible concentration of very small charged species at pressures (P ~ 0.01 Pa) and temperatures (T 600 K) at the boundary of the stability range of [bmim][Tf]. Thermal properties of nanometric neutral droplets have been investigated in the 0 T 700 K range. A near-continuous transition between a liquidlike phase at high T and a solidlike phase at low T takes place at T ~ 190 K in close correspondence with the bulk glass point Tg ~ 200 K. Solidification is accompanied by a transition in the dielectric properties of the droplet, giving rise to a small permanent dipole embedded into the solid cluster. The simulation results highlight the molecular precursors of several macroscopic properties and phenomena and point to the close competition of Coulomb and dispersion forces as their common origin.
Resumo:
Background
When we move along in time with a piece of music, we synchronise the downward phase of our gesture with the beat. While it is easy to demonstrate this tendency, there is considerable debate as to its neural origins. It may have a structural basis, whereby the gravitational field acts as an orientation reference that biases the formulation of motor commands. Alternatively, it may be functional, and related to the economy with which motion assisted by gravity can be generated by the motor system.
Methodology/Principal Findings
We used a robotic system to generate a mathematical model of the gravitational forces acting upon the hand, and then to reverse the effect of gravity, and invert the weight of the limb. In these circumstances, patterns of coordination in which the upward phase of rhythmic hand movements coincided with the beat of a metronome were more stable than those in which downward movements were made on the beat. When a normal gravitational force was present, movements made down-on-the-beat were more stable than those made up-on-the-beat.
Conclusions/Significance
The ubiquitous tendency to make a downward movement on a musical beat arises not from the perception of gravity, but as a result of the economy of action that derives from its exploitation.
Resumo:
A time-dependent method for calculating the collective excitation frequencies and densities of a trapped, inhomogeneous Bose-Einstein condensate with circulation is presented. The results are compared with time-independent solutions of the Bogoliubov-de Gennes equations. The method is based on time-dependent linear-response theory combined with spectral analysis of moments of the excitation modes of interest. The technique is straightforward to apply, extremely efficient in our implementation with parallel fast Fourier transform methods, and produces highly accurate results. For high dimensionality or low symmetry the time-dependent approach is a more practical computational scheme and produces accurate and reliable data. The method is suitable for general trap geometries, condensate flows and condensates permeated with defects and vortex structures.
Resumo:
We study a system of three trapped ions in an anisotropic bidimensional trap. By focusing on the transverse modes of the ions, we show that the mutual ion-ion Coulomb interactions set entanglement of a genuine tripartite nature, to some extent persistent to the thermal nature of the vibronic modes. We tackle this issue by addressing a nonlocality test in the phase space of the ionic system and quantifying the genuine residual tripartite entanglement in the continuous variable state of the transverse modes.
Resumo:
Studies by laser flash photolysis, transient Raman spectroscopy, and Raman and UV-vis spectroelectrochemistry are described in which the techniques have been used in parallel to compare the lowest energy charge-transfer excited states of Cu (1) complexes ([Cu(L)2]+ and [ (PPh3)2Cu(L)]+ [L = 2,2'-biquinoline (BIQ) or 6,7-dihydro-5,8-dimethyldibenzo[b,j] [1,10]-phenanthroline (DMCH)) with the species produced by electrochemical reduction in the same group of complexes. Transient resonance Raman spectra for the metal-to-ligand charge-transfer (MLCT) states of [Cu(DMCH)2]+ (1), [Cu(BIQ)2]+ (2), [Cu(DMCH)(PPh3)2]+ (3), and [Cu(BIQ)(PPh3)2]+ (4) are compared with the resonance Raman spectra of the same group of complexes following one-electron electrochemical reduction of the DMCH and BIQ ligands. The UV-vis and resonance Raman evidence suggests that the electrochemical reduction of the [Cu(I)L2]+ species proceeds according to the sequence [LCu(I)L]+ -->e- [LCu0L] -->e- [L.-Cu(I)L.-]-. Several features assignable to modes of the electrochemically generated DMCH.-and BIQ'- radical anions exhibit a close correspondence in both frequency and relative intensity with counterparts in the spectra of the MLCT states of 1 and 2. A notable exception is a band near 1590 cm-1 in the spectra of the electrochemically reduced species which occurs some 15 cm-1 lower in the corresponding spectra of the excited-state species. It is suggested that the shift may reflect the change in oxidation state of the metal center from Cu(I) to Cu(II) which occurs as a result of charge-transfer excitation.
Resumo:
We present here evidence for the observation of the magnetohydrodynamic (MHD) sausage modes in magnetic pores in the solar photosphere. Further evidence for the omnipresent nature of acoustic global modes is also found. The empirical decomposition method of wave analysis is used to identify the oscillations detected through a 4170 Å "blue continuum" filter observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument. Out of phase, periodic behavior in pore size and intensity is used as an indicator of the presence of magnetoacoustic sausage oscillations. Multiple signatures of the magnetoacoustic sausage mode are found in a number of pores. The periods range from as short as 30 s up to 450 s. A number of the magnetoacoustic sausage mode oscillations found have periods of 3 and 5 minutes, similar to the acoustic global modes of the solar interior. It is proposed that these global oscillations could be the driver of the sausage-type magnetoacoustic MHD wave modes in pores.
Resumo:
This paper investigates the influence of three fundamentally different durability enhancing products, viz. microsilica, controlled permeability formwork and silane, on some of the physical proper ties of near surface concrete. Microsilica (silica fume) is a pozzolan, controlled permeability formwork (CPF) is used to provide a free draining surface to a concrete form, while silane is a surface treatment applied to hardened concrete to reduce the ingress of water. Comparisons are made between the products when used individually and used in conjunction with each other, with a view to assessing whether the use of combinations of products may be desirable to improve the durability of concrete in certain circumstances. The effect of these materials on various durability parameters, such as freeze-thaw deterioration, carbonation resistance and chloride ingress, is considered in terms of their effect on permeation properties and surface strength. The results indicated that a combination of silane and CPF produces concrete with very low air permeability and sorptivity values. The influence of microsilica was more pronounced in increasing the surface strength of concrete.
Resumo:
Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from -60°C to 280°C, low vapor pressure, and high ionic conductivity up to 28.4mScm at 150°C and at x=1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius' Law and Vogel-Tamman-Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability. © 2013 Elsevier Ltd.
Resumo:
Background: There is a dearth of evidence regarding the impact of urban regeneration projects on public health, particularly the nature and degree to which urban regeneration impacts upon health-related behaviour change. Natural experiment methodology enables comprehensive large-scale evaluations of such interventions. The Connswater Community Greenway in Belfast is a major urban regeneration project involving the development of a 9 km linear park, including the provision of new cycle paths and walkways. In addition to the environmental improvements, this complex intervention involves a number of programmes to promote physical activity in the regenerated area. The project affords a unique opportunity to investigate the public health impact of urban regeneration.
Methods/Design: The evaluation framework was informed by the socio-ecological model and guided by the RE-AIM Framework. Key components include: (1) a quasi-experimental before-and-after survey of the Greenway population (repeated cross-sectional design), in tandem with data from a parallel Northern Ireland-wide survey for comparison; (2) an assessment of changes in the local built environment and of walkability using geographic information systems; (3) semi-structured interviews with a purposive sample of survey respondents, and a range of community stakeholders, before and after the regeneration project; and (4) a cost-effectiveness analysis. The primary outcome is change in proportion of individuals identified as being regularly physically active, according to the current UK recommendations. The RE-AIM Framework will be used to make an overall assessment of the impact of the Greenway on the physical activity behaviour of local residents.
Discussion: The Connswater Community Greenway provides a significant opportunity to achieve long-term, population level behaviour change. We argue that urban regeneration may be conceptualised meaningfully as a complex intervention comprising multiple components with the potential, individually and interactively, to affect the behaviour of a diverse population. The development and implementation of our comprehensive evaluation framework reflects this complexity and illuminates an approach to the empirical, rigorous evaluation of urban regeneration. More specifically, this study will add to the much needed evidence-base about the impact of urban regeneration on public health as well as having important implications for the development of natural experiment methodology.
Resumo:
Purpose
Recent in vitro results have shown significant contributions to cell killing from signaling effects at doses that are typically used in radiation therapy. This study investigates whether these in vitro observations can be reconciled with in vivo knowledge and how signaling may have an impact on future developments in radiation therapy.
Methods and Materials
Prostate cancer treatment plans were generated for a series of 10 patients using 3-dimensional conformal therapy, intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy techniques. These plans were evaluated using mathematical models of survival following modulated radiation exposures that were developed from in vitro observations and incorporate the effects of intercellular signaling. The impact on dose-volume histograms and mean doses were evaluated by converting these survival levels into "signaling-adjusted doses" for comparison.
Results
Inclusion of intercellular communication leads to significant differences between the signalling-adjusted and physical doses across a large volume. Organs in low-dose regions near target volumes see the largest increases, with mean signaling-adjusted bladder doses increasing from 23 to 33 Gy in IMRT plans. By contrast, in high-dose regions, there is a small decrease in signaling-adjusted dose due to reduced contributions from neighboring cells, with planning target volume mean doses falling from 74 to 71 Gy in IMRT. Overall, however, the dose distributions remain broadly similar, and comparisons between the treatment modalities are largely unchanged whether physical or signaling-adjusted dose is compared. Conclusions Although incorporating cellular signaling significantly affects cell killing in low-dose regions and suggests a different interpretation for many phenomena, their effect in high-dose regions for typical planning techniques is comparatively small. This indicates that the significant signaling effects observed in vitro are not contradicted by comparison with clinical observations. Future investigations are needed to validate these effects in vivo and to quantify their ranges and potential impact on more advanced radiation therapy techniques.
Resumo:
Background: Following discharge home from the ICU, patients often suffer from reduced physical function, exercise capacity, health-related quality of life and social functioning. There is usually no support to address these longer term problems, and there has been limited research carried out into interventions which could improve patient outcomes. The aim of this study is to investigate the effectiveness and cost-effectiveness of a 6-week programme of exercise on physical function in patients discharged from hospital following critical illness compared to standard care.
Methods/Design: The study design is a multicentre prospective phase II, allocation-concealed, assessor-blinded, randomised controlled clinical trial. Participants randomised to the intervention group will complete three exercise sessions per week (two sessions of supervised exercise and one unsupervised session) for 6 weeks. Supervised sessions will take place in a hospital gymnasium or, if this is not possible, in the participants home and the unsupervised session will take place at home. Blinded outcome assessment will be conducted at baseline after hospital discharge, following the exercise intervention, and at 6 months following baseline assessment (or equivalent time points for the standard care group). The primary outcome measure is physical function as measured by the physical functioning subscale of the Short-Form-36 health survey following the exercise programme. Secondary outcomes are health-related quality of life, exercise capacity, anxiety and depression, self efficacy to exercise and healthcare resource use. In addition, semi-structured interviews will be conducted to explore participants’ perceptions of the exercise programme, and the feasibility (safety, practicality and acceptability) of providing the exercise programme will be assessed. A within-trial cost-utility analysis to assess the cost-effectiveness of the intervention compared to standard care will also be conducted.
Discussion: If the exercise programme is found to be effective, this study will improve outcomes that are meaningful to patients and their families. It will inform the design of a future multicentre phase III clinical trial of exercise following recovery from critical illness. It will provide useful information which will help the development of services for patients after critical illness.
Resumo:
The nursing care of a six year old with type 1 diabetes reveals the importance of accurate control of the condition for normal physical, emotional and cognitive development. Clearly the children's nurse can educate and support the child, parents and extended family towards achieving independence and self-care. Theoretical knowledge of normal child maturation can guide nurses to constantly adapt their modes of communication and nursing skills, so as to promote every aspect and stage of the child's growth. Prevalence of type 1 diabetes is increasing, and nurses should use their close professional involvement with patients to assist research at every opportunity.
Resumo:
We investigate the optomechanical properties of a periodic array of identical scatterers placed inside an optical cavity and extend our previous results. We show that operating at the points where the array is transmissive results in linear optomechanical coupling strengths between the cavity field and collective motional modes of the array that may be several orders of magnitude larger than is possible with an equivalent reflective ensemble. We describe and interpret these effects in detail and investigate the nature of the scaling laws of the coupling strengths for the different transmissive points in various regimes. © 2013 American Physical Society.