65 resultados para Photon Counting
Resumo:
The two-photon resonances of atomic hydrogen (? = 2 × 205.1 nm), atomic nitrogen (? = 2 × 206.6 nm) and atomic oxygen (? = 2 × 225.6 nm) are investigated together with two selected transitions in krypton (? = 2×204.2 nm) and xenon (? = 2×225.5 nm). The natural lifetimes of the excited states, quenching coefficients for the most important collisions partners, and the relevant ratios of the two-photon excitation cross sections are measured. These data can be applied to provide a calibration for two-photon laser-induced fluorescence measurements based on comparisons with spectrally neighbouring noble gas resonances.
Resumo:
The atmospheric pressure plasma jet is a capacitively coupled radio frequency discharge (13.56 MHz) running with a high helium flux (2m3 h-1) between concentric electrodes. Small amounts (0.5%) of admixed molecular oxygen do not disturb the homogeneous plasma discharge. The jet effluent leaving the discharge through the ring-shaped nozzle contains high concentrations of radicals at a low gas temperature—the key property for a variety of applications aiming at treatment of thermally sensitive surfaces. We report on absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence (TALIF) spectroscopy in the jet effluent. Calibration is performed with the aid of a comparative TALIF measurement with xenon. An excitation scheme (different from the one earlier published) providing spectral matching of both the two-photon resonances and the fluorescence transitions is applied.
Resumo:
We provide the quantum-mechanical description of the excitation of surface plasmon polaritons on metal surfaces by single photons. An attenuated-reflection setup is described for the quantum excitation process in which we find remarkably efficient photon-to-surface plasmon wave-packet transfer. Using a fully quantized treatment of the fields, we introduce the Hamiltonian for their interaction and study the quantum statistics during transfer with and without losses in the metal.
Resumo:
Cell counting of bronchoalveolar lavage (BAL) fluid is performed manually in routine practice. This has both methodological and inherent errors; however, the accuracy and suitability of automated counting devices have been questioned. In this study, a Coulter(R) Counter D Industrial model was calibrated and then used to measure the total cell count in unprocessed bronchoalveolar lavage fluid, and compared to a standard manual method.
Resumo:
We have observed the simultaneous inner-shell absorption of two extreme-ultraviolet photons by a Xe atom in an experiment performed at the short-wavelength free electron laser facility FLASH. Photoelectron spectroscopy permitted us to unambiguously identify a feature resulting from the ionization of a single electron of the 4d subshell of Xe by two photons each of energy (93 +/- similar to 1) eV. The feature's intensity has a quadratic dependence on the pulse energy. The results are discussed and interpreted within the framework of recent results of ion spectroscopy experiments of Xe obtained at ultrahigh irradiance in the extreme-ultraviolet regime.
Resumo:
Absolute three-photon detachment cross sections are calculated for the fluorine negative ion within the lowest-order perturbation theory. The Dyson equation of the atomic many-body theory is used to obtain the ground-state 2p wavefunction with correct asymptotic behaviour, corresponding to the true (experimental) binding energy. We show that in accordance with the adiabatic theory this is crucial for obtaining absolute values of the multiphoton cross sections. Comparisons with other calculations and experimental data are presented.
Resumo:
Scanning tunnelling microscope (STM) tip-induced light emission from Au and Ag has been studied. Thin film samples similar to100nm thick were prepared by thermal evaporation at 0.5nm/s onto a room-temperature glass substrate to produce grains of 20-50nm in lateral dimension at the surface. Light emission from the samples in the STM was quasi-simultaneously recorded with the topography, at 1.8V tip bias and 3-40nA current, alternating pixel by pixel at the same bias. Typically, a surface scan range of 150 nm x 150 nm was surveyed. Au, W and PtIr tips were used.
Resumo:
Nonclassical states of a mechanical mode at nonzero temperature are achieved in a scheme that combines radiation-pressure coupling to a light field and photon subtraction. The scheme embodies an original and experimentally realistic way to obtain mesoscopic quantumness by putting together two mature technologies for quantum control. The protocol is quasi-insensitive to mechanical damping.
Resumo:
A recent paper by Lechtman et al (2011 Phys. Med. Biol. 56 4631-47) presented Monte Carlo modelling of gold nanoparticle dose modification. In it, they predict that the introduction of gold nanoparticles has the strongest effect with x-rays at kilovoltage energies, and that negligible increases in dose are expected at megavoltage energies. While these results are in agreement with others in the literature (including those produced by our group), the conclusion that '(goldnanoparticle) radiosensitization using a 6 MV photon source is not clinically feasible' appears to conflict with recently published experimental studies which have shown radiosensitization using 6 MV x-ray sources with relatively low gold concentrations. The increasing disparity between theoretical predictions of dose enhancement and experimental results in the field of gold nanoparticle radiosensitization suggests that, while the ability of gold nanoparticles to modify dose within a tumour volume is well understood, the resulting radiosensitization is not simply correlated with this measure. This highlights the need to validate theoretical predictions of this kind against experimental measurements, to ensure that the scenarios and values being modelled are meaningful within a therapeutic context.