46 resultados para Philostratus, Flavius, ca. 170-ca. 245.
Resumo:
A configuration-interaction approach, based on the use of B-spline basis sets combined with a model potential including monoelectronic and dielectronic core polarization effects, is employed to calculate term energies and wavefunctions for neutral Ca. Results are reported for singlet and triplet bound states, and some quasi-bound states above the lowest ionization limit, with angular momentum up to L = 4. Comparison with experiment and with other theoretical results shows that this method yields the most accurate energy values for neutral Ca obtained to date. Wavefunction compositions, necessary for labelling the levels, and the effects of semi-empirical polarization potentials on the wavefunctions are discussed, as are some recent identifications of doubly-excited states. It is shown that taking into account dielectronic core polarization changes the energies of the lowest terms in Ca significantly, in general by a few hundred cm(-1), the effect decreasing rapidly for the higher bound states. For Rydberg states with n approximate to 7 the accuracy of the results is often better than a few cm(-1). For series members (or perturbers) with a pronounced 3d character the error can reach 150 cm(-1). The wavefunctions are used to calculate oscillator strengths and lifetimes for a number of terms and these are compared with existing measurements. The agreement is good but points to a need for improved measurements.
Resumo:
Fasciolosis is a parasitic infection by the liver fluke Fasciola hepatica, which costs the global agricultural community over US $2 billion per year. Its prevalence is rising due to factors such as climate change and drug resistance. ATP-dependent membrane transporters are considered good potential drug targets as they are essential for cellular processes and are in an exposed, accessible position in the cell. Immunolocalisation studies demonstrated that a plasma membrane calcium ATPase (PMCA) was localised to the parenchymal tissue in F. hepatica. The coding sequence for a F. hepatica PMCA (FhPMCA) has been obtained. This sequence encodes a 1,163 amino acid protein which contains motifs which are commonly conserved in PMCAs. Molecular modelling predicted that the protein has 10 transmembrane segments which include a potential calcium ion binding site and phosphorylation motif. FhPMCA interacts with the calmodulin-like protein FhCaM1, but not the related proteins FhCaM2 or FhCaM3, in a calcium-ion dependent manner. This interaction occurs through a region in the C-terminal region of FhPMCA which most likely adopts an a-helical conformation. When FhPMCA was heterologously expressed in a budding yeast strain deleted for its PMCA (Pmc1p), it restored viability. Microsomes prepared from these yeast cells had calcium ion stimulated ATPase activity which was inhibited by the known PMCA inhibitors, bisphenol and eosin. The potential of FhPMCA as a new drug target is discussed.
Resumo:
We have developed a method, based on the use of B-spline basis sets and model potentials, for determining properties of systems with two or three electrons outside a polarizable closed-shell core. It is applied to the calculation of the electron affinity of Ca and the resulting value of 17.7 meV is in excellent agreement with the most recent experiments. It is found that the dielectronic core-valence interaction reduces the electron affinity by 39.5 meV.
Resumo:
Objective: Pharmacological profiling of store-operated Ca(2+) entry (SOCE) and molecular profiling of ORAI and TRPC expression in arterioles.
Methods: Fura-2 based microfluorimetry was used to assess CPA-induced SOCE in rat retinal arteriolar myocytes. Arteriolar ORAI and TRP transcript expression were screened using RT-PCR.
Results: SKF96365 and LOE908 blocked SOCE (IC(50) s of 1.2µM and 1.4µM, respectively). Gd(3+) and La(3+) potently inhibited SOCE (IC(50) s of 21nM and 42nM, respectively), but Ni(2+) showed lower potency (IC(50) = 11.6µM). 2-aminoethyldiphenyl borate (2APB) inhibited SOCE (IC(50) = 3.7µM) but enhanced basal influx (>100µM). Verapamil and nifedipine had no effect at concentrations that inhibit L-type Ca(2+) channels, but diltiazem inhibited SOCE by approximately 40% (=0.1µM). RT-PCR demonstrated transcript expression for ORAI 1, 2 and 3, and TRPC1, 3, 4 and 7. Transcripts for TRPV1 and 2, which are activated by 2APB, were also expressed.
Conclusion: The pharmacological profile of SOCE in retinal arteriolar smooth muscle appears unique when compared to other vascular tissues. This suggests that the molecular mechanisms underlying SOCE can differ, even in closely related tissues. Taken together, the pharmacological and molecular data are most consistent with involvement of TRPC1 in SOCE, although involvement of ORAI or other TRPC channels cannot be excluded. © 2012 John Wiley & Sons Ltd.
Resumo:
Background and Purpose: Ca(2+) imaging reveals subcellular Ca(2+) sparks and global Ca(2+) waves/oscillations in vascular smooth muscle. It is well established that Ca(2+) sparks can relax arteries, but we have previously reported that sparks can summate to generate Ca(2+) waves/oscillations in unpressurized retinal arterioles, leading to constriction. We have extended these studies to test the functional significance of Ca(2+) sparks in the generation of myogenic tone in pressurized arterioles.
Experimental Approach: Isolated retinal arterioles (25-40 μm external diameter) were pressurized to 70 mmHg, leading to active constriction. Ca(2+) signals were imaged from arteriolar smooth muscle in the same vessels using Fluo4 and confocal laser microscopy.
Key Results: Tone development was associated with an increased frequency of Ca(2+) sparks and oscillations. Vasomotion was observed in 40% of arterioles and was associated with synchronization of Ca(2+) oscillations, quantifiable as an increased cross-correlation coefficient. Inhibition of Ca(2+) sparks with ryanodine, tetracaine, cyclopiazonic acid or nimodipine, or following removal of extracellular Ca(2+) , resulted in arteriolar relaxation. Cyclopiazonic acid-induced dilatation was associated with decreased Ca(2+) sparks and oscillations but with a sustained rise in the mean global cytoplasmic [Ca(2+) ] ([Ca(2+) ]c ), as measured using Fura2 and microfluorimetry.
Conclusions and Implications: This study provides direct evidence that Ca(2+) sparks can play an excitatory role in pressurized arterioles, promoting myogenic tone. This contrasts with the generally accepted model in which sparks promote relaxation of vascular smooth muscle. Changes in vessel tone in the presence of cyclopiazonic acid correlated more closely with changes in spark and oscillation frequency than global [Ca(2+) ]c , underlining the importance of frequency-modulated signalling in vascular smooth muscle.
Resumo:
Several logic gates and switches can be accessed from two different combinations of a single set of fluorophore, receptor and spacer components.
Resumo:
Electron-excitation collision strengths have been calculated for transitions between the ten lowest levels of Ca XVII (2sS, 2s2p P, 2s2p P, 2pP 2p D, 2pS ). At high impact energies, where all the channels are open, the calculation was carried out in the LS-coupling approximation by means of the R-matrix method. Transitions between the fine structure levels were then determined by application of a unitary transformation to the LS-coupled K-matrices. At low impact energies, where some of the channels may be closed, an extension of the R-matrix method was employed to take account of relativistic effects directly in the scattering equations. In general, results are in good agreement with recent distorted-wave calculations. Electron-excitation rates are given for a range of electron temperatures.
Resumo:
Combretastatin-A4 (CA-4) is a natural derivative of the African willow tree Combretum caffrum. CA-4 is one of the most potent antimitotic components of natural origin, but it is, however, intrinsically unstable. A novel series of CA-4 analogs incorporating a 3,4-diaryl-2-azetidinone (β-lactam) ring were designed and synthesized with the objective to prevent cis -trans isomerization and improve the intrinsic stability without altering the biological activity of CA-4. Evaluation of selected β-lactam CA-4 analogs demonstrated potent antitubulin, antiproliferative, and antimitotic effects in human leukemia cells. A lead β-lactam analog, CA-432, displayed comparable antiproliferative activities with CA-4. CA-432 induced rapid apoptosis in HL-60 acute myeloid leukemia cells, which was accompanied by depolymerization of the microtubular network, poly(ADP-ribose) polymerase cleavage, caspase-3 activation, and Bcl-2 cleavage. A prolonged G(2)M cell cycle arrest accompanied by a sustained phosphorylation of mitotic spindle checkpoint protein, BubR1, and the antiapoptotic proteins Bcl-2 and Bcl-x(L) preceded apoptotic events in K562 chronic myeloid leukemia (CML) cells. Molecular docking studies in conjunction with comprehensive cell line data rule out CA-4 and β-lactam derivatives as P-glycoprotein substrates. Furthermore, both CA-4 and CA-432 induced significantly more apoptosis compared with imatinib mesylate in ex vivo samples from patients with CML, including those positive for the T315I mutation displaying resistance to imatinib mesylate and dasatinib. In summary, synthetic intrinsically stable analogs of CA-4 that display significant clinical potential as antileukemic agents have been designed and synthesized.