55 resultados para Phase formation
Resumo:
Research on the kinetics of precipitate formation and austenite reversion in maraging steels has received great attention due to their importance to steel properties. Judging from the literature in recent years, research into maraging steels has been very active, mainly extending to new types of steels, for new applications beyond the traditional strength requirements. This chapter provides an in-depth overview of the literature in this area. In addition, the kinetics of precipitate formation are analysed using the Johnson–Mehl–Avrami (JMA) theory.
Resumo:
Purpose: In ischemic retinopathies, the misdirection of reparative angiogenesis away from the hypoxic retina leads to pathologic neovascularization. Thus, therapeutic strategies that reverse this trend would be extremely beneficial. Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is an important mediator of vascular endothelial growth factor (VEGF) function facilitating vascular growth and maturation. However, in addition to NO, eNOS can also produce superoxide (O), exacerbating pathology. Here, our aim was to investigate the effect of eNOS overexpression on vascular closure and subsequent recovery of the ischemic retina.
Methods: Mice overexpressing eNOS-GFP were subjected to oxygen-induced retinopathy (OIR) and changes in retinal vascularization quantified. Background angiogenic drive was assessed during vascular development and in aortic rings. NOS activity was measured by Griess assay or conversion of radiolabeled arginine to citrulline, nitrotyrosine (NT), and superoxide by immunolabeling and dihydroethidium fluorescence and VEGF by ELISA.
Results: In response to hyperoxia, enhanced eNOS expression led to increased NOS-derived superoxide and dysfunctional NO production, NT accumulation, and exacerbated vessel closure associated with tetrahydrobiopterin (BH) insufficiency. Despite worse vaso-obliteration, eNOS overexpression resulted in elevated hypoxia-induced angiogenic drive, independent of VEGF production. This correlated with increased vascular branching similar to that observed in isolated aortas and during development. Enhanced recovery was also associated with neovascular tuft formation, which showed defective NO production and increased eNOS-derived superoxide and NT levels.
Conclusions: In hyperoxia, reduced BH bioavailability causes overexpressed eNOS to become dysfunctional, exacerbating vaso-obliteration. In the proliferative phase, however, eNOS has important prorepair functions enhancing angiogenic growth potential and recovery in ischemia. © 2012 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
The formation of arsenic-phytochelatin (As-PC) complexes is thought to be part of the plant detoxification strategy for arsenic. This work examines (i) the arsenic (As) concentration-dependent formation of As-PC complex formation and (ii) redistribution and metabolism of As after arrested As uptake in Helianthus annuus. HPLC with parallel ICP-MS/ES-MS detection was used to identify and quantify the species present in plant extracts exposed to arsenate (As(V)) (between 0 and 66.7 micromol As l-1 for 24 h). At As concentrations below the EC50 value for root growth (22 micromol As l-1) As uptake is exponential, but it is reduced at concentrations above. Translocation between root and shoot seemed to be limited to the uptake phase of arsenic. No redistribution of As between root and shoot was observed after arresting As exposure. The formation of As-PC complexes was concentration-dependent. The amount and number of As-PC complexes increased exponentially with concentration up to 13.7 micromol As l-1. As(III)-PC3 and GS-As(III)-PC2 complexes were the dominant species in all samples. The ratio of PC-bound As to unbound As increased up to 1.3 micromol As l-1 and decreased at higher concentrations. Methylation of inorganic As was only a minor pathway in H. annuus with about 1% As methylated over a 32 d period. The concentration dependence of As-PC complex formation, amount of unbound reduced and oxidized PC2, and the relative uptake rate showed that As starts to influence the cellular metabolism of H. annuus negatively at As concentrations well below the EC50 value determined by more traditional means. Generally, As-PC complexes and PC-synthesis rate seem to be the more sensitive parameters to be studied when As toxicity values are to be estimated.
Resumo:
A new compound, Mn8Pd15Si7, is reported to crystallize in a face centered cubic unit cell of dimension a = 12.0141(2) angstrom, space groupFm (3) over barm, and can thus be classified as a G-phase. The crystal structure was studied by single crystal X-ray diffraction, X-ray and neutron powder diffraction and electron diffraction. A filled Mg6Cu16Si7 type structure was found, corresponding to the Sc11Ir4 type structure. The magnetic properties were investigated by magnetization measurements and Reverse Monte Carlo modeling of low temperature magnetic short-range order (SRO). Dominating near neighbor antiferromagnetic correlations were found between the Mn atoms and geometric frustration in combination with random magnetic interactions via metal sites with partial Mn occupancy were suggested to hinder formation of long-range magnetic order.
Resumo:
Piezoelectric materials, which convert mechanical to electrical energy and vice versa, are typically characterized by the intimate coexistence of two phases across a morphotropic phase boundary. Electrically switching one to the other yields large electromechanical coupling coefficients. Driven by global environmental concerns, there is currently a strong push to discover practical lead-free piezoelectrics for device engineering. Using a combination of epitaxial growth techniques in conjunction with theoretical approaches, we show the formation of a morphotropic phase boundary through epitaxial constraint in lead-free piezoelectric bismuth ferrite (BiFeO3) films. Electric field-dependent studies show that a tetragonal-like phase can be reversibly converted into a rhombohedral-like phase, accompanied by measurable displacements of the surface, making this new lead-free system of interest for probe-based data storage and actuator applications.
Resumo:
Time-resolved DRIFTS, MS, and resistance measurements were used to study the interaction of undoped and Pd-doped SnO2 with H-2 in air and argon at 300 degrees C. Using first-order kinetics, we compare the time constants for the resistance drop and its partial recovery with those of the surface hydroxyl evolution and water formation in the gas phase upon exposure to hydrogen. In the case of the undoped oxide, resistance and bridging hydroxyls (BOHs) evolve similarly, manifesting a fast main drop followed by recovery at a similar rate. The rate of water formation for this material was found to be much slower than that of the main drop in both the resistance and BOHs. In contrast, the resistance change for SnO2-Pd appeared to be similar to that of water formation, and no correlation was found between the evolution of resistance and surface OHs. Isotopic exchange on both materials revealed that water formation occurs via fast and slow hydrogen transfer to surface oxygen species. While the former originates from just-adsorbed hydrogen, the latter appears to proceed from the preadsorbed OHs. Both surfaces exhibit close interaction between chemisorbed oxygen and existing bridging OH groups, indicating that the latter is an intermediate in the hydrogen oxidation and generation of donor states on the surface.
Resumo:
Plant embryogenesis is intimately associated with programmed cell death. The mechanisms of initiation and control of programmed cell death during plant embryo development are not known. Proteolytic activity associated with caspase-like proteins is paramount for control of programmed cell death in animals and yeasts. Caspase family of proteases has unique strong preference for cleavage of the target proteins next to asparagine residue. In this work, we have used synthetic peptide substrates containing caspase recognition sites and corresponding specific inhibitors to analyse the role of caspase-like activity in the regulation of programmed cell death during plant embryogenesis. We demonstrate that VEIDase is a principal caspase-like activity implicated in plant embryogenesis. This activity increases at the early stages of embryo development that coincide with massive cell death during shape remodeling. The VEIDase activity exhibits high sensitivity to pH, ionic strength and Zn2+ concentration. Altogether, biochemical assays show that VEIDase plant caspase-like activity resembles that of both mammalian caspase-6 and yeast metacaspase, YCA1. In vivo, VEIDase activity is localised specifically in the embryonic cells during both the commitment and in the beginning of the execution phase of programmed cell death. Inhibition of VEIDase prevents normal embryo development via blocking the embryo-suspensor differentiation. Our data indicate that the VEIDase activity is an integral part in the control of plant developmental cell death programme, and that this activity is essential for the embryo pattern formation.
Resumo:
NiTi alloys have been widely used in the applications for micro-electro-mechanical-systems (MEMS), which often involve some precise and complex motion control. However, when using the NiTi alloys in MEMS application, the main problem to be considered is the degradation of functional property during cycling loading. This also stresses the importance of accurate prediction of the functional behavior of NiTi alloys. In the last two decades, a large number of constitutive models have been proposed to achieve the task. A portion of them focused on the deformation behavior of NiTi alloys under cyclic loading, which is a practical and non-negligible situation. Despite of the scale of modeling studies of the field in NiTi alloys, two experimental observations under uniaxial tension loading have not received proper attentions. First, a deviation from linearity well before the stress-induced martensitic transformation (SIMT) has not been modeled. Recent experiments confirmed that it is caused by the formation of stress-induced R phase. Second, the influence of the well-known localized Lüders-like SIMT on the macroscopic behavior of NiTi alloys, in particular the residual strain during cyclic loading, has not been addressed. In response, we develop a 1-D phenomenological constitutive model for NiTi alloys with two novel features: the formation of stress-induced R phase and the explicit modeling of the localized Lüders-like SIMT. The derived constitutive relations are simple and at the same time sufficient to describe the behavior of NiTi alloys. The accumulation of residual strain caused by R phase under different loading schemes is accurately described by the proposed model. Also, the residual strain caused by irreversible SIMT at different maximum loading strain under cyclic tension loading in individual samples can be explained by and fitted into a single equation in the proposed model. These results show that the proposed model successfully captures the behavior of R phase and the essence of localized SIMT.
Resumo:
The electrochemical uptake of oxygen on a Ru(0001) electrode was investigated by electron diffraction, Auger spectroscopy, and cyclic voltammetry. An ordered (2 × 2)-O overlayer forms at a potential close to the hydrogen region. At +0.42 and +1.12 V vs Ag/AgCl, a (3 × 1) phase and a (1 × 1)-O phase, respectively, emerge. When the Ru electrode potential is maintained at +1.12 V for 2 min, RuO2 grows epitaxially with its (100) plane parallel to the Ru(0001) surface. In contrast to the RuO domains, the non-oxidized regions of the Ru electrode surface are flat. If, however, the electrode potential is increased to +1.98 V for 2 min, the remaining non-oxidized Ru area also becomes rough. These findings are compared with O overlayers and oxides on the Ru(0001) and Ru(101¯1) surfaces created by exposure to gaseous O under UHV conditions. On the other hand, gas-phase oxidation of the Ru(101¯0) surface leads to the formation of RuO with a (100) orientation. It is concluded that the difference in surface energy between RuO(110) and RuO(100) is quite small. RuO again grows epitaxially on Ru(0001), but with the (110) face oriented parallel to the Ru(0001) surface. The electrochemical oxidation of the Ru(0001) electrode surface proceeds via a 3-dimensional growth mechanism with a mean cluster size of 1.6 nm, whereas under UHV conditions, a 2-dimensional oxide film (1-2 nm thick) is epitaxially formed with an average domain size of 20 µm. © 2000 American Chemical Society.
Resumo:
This paper presents a case-study of a PMU application with PSS support in a real large scale Chinese power system to suppress inter-area oscillations. The paper uses PMU measured feedback signals from a PSS input signal for dynamic torque analysis (DTA). In the paper, a mathematical model of multi-machine power system is described, followed by formation of the residue and DTA indices. Simulations of the model are used with a large-scale power system model to demonstrate the role of PSS and the equivalence of DTA residue indices.
Resumo:
Bond formation and rearrangement reactions in gas phase electron attachment were studied through dissociative electron attachment (DEA) to pentafluorotoluene (PFT), pentafluoroaniline (PFA) and pentafluorophenol (PFP) in the energy range 0-14 eV. In the case of PFA and PFP, the dominant processes involve formation of [M - HF](-) through the loss of neutral HF. This fragmentation channel is most efficient at low incident electron energy and for PFP it is accompanied by a substantial conformational change of the anionic fragment. At higher energy, HF loss is also observed as well as a number of other fragmentation processes. Thermochemical threshold energies have been computed for all the observed fragments and classical trajectories of the electron attachment process were calculated to elucidate the fragmentation mechanisms. For the dominant reaction channel leading to the loss of HF from PFP, the minimum energy path was calculated using the nudged elastic band method.
Resumo:
In situ forming (ISF) drug delivery implants have gained tremendous levels of interest over the last few decades. This is due to their wide range of biomedical applications such as in tissue engineering, cell encapsulation, microfluidics, bioengineering and drug delivery. Drug delivery implants forming upon injection has shown a range of advantages which include localized drug delivery, easy and less invasive application, sustained drug action, ability to tailor drug delivery, reduction in side effects associated with systemic delivery and also improved patient compliance and comfort. Different factors such as temperature, pH, ions, and exchange of solvents are involved in in situ implant formation. This review especially focuses on ISF implants that are formed through solvent induced phase inversion (SPI) technique. The article critically reviews and compares a wide range of polymers, solvents, and co-solvents that have been used in SPI implant preparation for control release of a range of drug molecules. Major drawback of SPI systems has been their high burst release. In this regard, the article exhaustively discusses factors that affect the burst release and different modification strategies that has been utilised to reduce the burst effect from these implants. Performance and controversial issues associated with the use of different biocompatible solvents in SPI systems is also discussed. Biodegradation, formulation stability, methods of characterisation and sterilisation techniques of SPI systems is comprehensively reviewed. Furthermore, the review also examines current SPI-based marketed products, their therapeutic application and associated clinical data. It also exemplifies the interest of multi-billion dollar pharma companies worldwide for further developments of SPI systems to a range of therapeutic applications. The authors believe that this will be the first review article that extensively investigate and discusses studies done to date on SPI systems. In so doing, this article will undoubtedly serve as an enlightening tool for the scientists working in the concerned area.
Resumo:
The aqueous phase reforming (APR) of xylitol was studied in a continuous fixed bed reactor over three catalysts: Pt/Al2O3, Pt/TiO2 and Pt-Re/TiO2. The data obtained in the case of the monometallic Pt catalysts was compared to the bimetallic Pt-Re sample. The effect of Re addition on the catalyst stability, activity, product formation and selectivity toward hydrogen and alkanes was studied. The bimetallic catalyst demonstrated a higher selectivity to alkanes compared to the monometallic samples. The monometallic catalyst was more selective toward hydrogen formation. A plausible reaction scheme explaining differences in selectivity toward hydrogen and alkanes was proposed and discussed.
Resumo:
Aqueous core/polymer shell microcapsules with mommuclear and polynuclear core morphologies have been formed by internal phase separation from water-in-oil emulsions. The water-in-oil emulsions were prepared with the shell polymer dissolved in the aqueous phase by adding a low boiling point cosolvent. Subsequent removal of this cosolvent (by evaporation) leads to phase separation of the polymer and, if the spreading conditions are correct, formation of a polymer shell encapsulating the aqueous core. Poly(tetrahydrofuran) (PTHF) shell/aqueous core microcapsules, with a single (mononuclear) core, have been prepared, but the low T-g (-84 degreesC) of PTHF makes characterization of the particles more difficult. Poly(methyl methacrylate) and poly(isobutyl methacrylate) have higher T-g values (105 and 55 degreesC, respectively) and can be dissolved in water at sufficiently high acetone concentrations, but evaporation of the acetone from the emulsion droplets in these cases mostly resulted in polynuclear capsules, that is, having cores with many very small water droplets contained within the polymer matrix. Microcapsules with fewer, larger aqueous droplets in the core could be produced by reducing the rate of evaporation of the acetone. A possible mechanism for the formation of these polynuclear cores is suggested. These microcapsules were prepared dispersed in an oil-continuous phase. They could, however, be successfully transferred to a water-continuous phase, using a simple centrifugation technique. In this way, microcapsules with aqueous cores, dispersed in an aqueous medium, could be made. It would appear that a real challenge with the water-core systems, compared to the previous oil-core systems, is to obtain the correct order of magnitude of the three interfacial tensions, between the polymer, the aqueous phase, and the continuous oil phase; these control the spreading conditions necessary to produce shells rather than "acorns".
Resumo:
The phase behavior of two types of poly(ethylene oxide)/poly(propylene oxide) (PEO/PPO) copolymers in aqueous solutions was studied by light scattering, viscometry, and infrared spectroscopy. Both the reverse poloxamer (Pluronic 10R5) and the star type poloxamine (Tetronic 90R4) have practically the same PEO/PPO ratio with their hydrophobic blocks (PPO) located in the outer part. The temperature-composition phase diagrams show that both 10R5 and 90R4 tend to form aggregates in water. Up to four different phases can be detected in the case of Tetronic 90R4 for each temperature: unimers, random networks, micellar networks, and macrophase separation. Viscometric and infrared measurements complemented the results obtained by light scattering and visual inspection.