35 resultados para Performance management systems
Resumo:
Accurate modelling of the internal climate of buildings is essential if Building Energy Management Systems (BEMS) are to efficiently maintain adequate thermal comfort. Computational fluid dynamics (CFD) models are usually utilised to predict internal climate. Nevertheless CFD models, although providing the necessary level of accuracy, are highly computationally expensive, and cannot practically be integrated in BEMS. This paper presents and describes validation of a CFD-ROM method for real-time simulations of building thermal performance. The CFD-ROM method involves the automatic extraction and solution of reduced order models (ROMs) from validated CFD simulations. ROMs are shown to be adequately accurate with a total error below 5% and to retain satisfactory representation of the phenomena modelled. Each ROM has a time to solution under 20seconds, which opens the potential of their integration with BEMS, giving real-time physics-based building energy modelling. A parameter study was conducted to investigate the applicability of the extracted ROM to initial boundary conditions different from those from which it was extracted. The results show that the ROMs retained satisfactory total errors when the initial conditions in the room were varied by ±5°C. This allows the production of a finite number of ROMs with the ability to rapidly model many possible scenarios.
Resumo:
This paper proposes a hierarchical energy management system for multi-source multi-product (MSMP) microgrids. Traditional energy hub based scheduling method is combined with a hierarchical control structure to incorporate transient characteristics of natural gas flow and dynamics of energy converters in microgrids. The hierarchical EMS includes a supervisory control layer, an optimizing control layer, and an execution control layer. In order to efficiently accommodate the systems multi time-scale characteristics, the optimizing control layer is decomposed into three sub-layers: slow, medium and fast. Thermal, gas and electrical management systems are integrated into the slow, medium, and fast control layer, respectively. Compared with wind energy, solar energy is easier to integrate and more suitable for the microgrid environment, therefore, potential impacts of the hierarchical EMS on MSMP microgrids is investigated based on a building energy system integrating photovoltaic and microturbines. Numerical studies indicate that by using a hierarchical EMS, MSMP microgrids can be economically operated. Also, interactions among thermal, gas, and electrical system can be effectively managed.
Resumo:
Purpose
The study contributes to the literature on public value and performance examining politicians’ and managers’ perspectives by investigating the importance they attach to the different facets of performance information (i.e. budgetary, accrual based- and non-financial information (NFI)).
Design/methodology/approach
We survey politicians and managers in all Italian municipalities of at least 80,000 inhabitants.
Findings
Overall, NFI is more appreciated than financial information (FI). Moreover, budgetary accounting is preferred to accrual accounting. Politicians’ and managers’ preferences are generally aligned.
Research limitations/implications
NFI as a measure of public value is not alternative, but rather complementary, to FI. The latter remains a fundamental element of public sector accounting due to its role in resource allocation and control.
Practical implications
The preference for NFI over FI and of budgetary over accruals accounting suggests that the current predominant emphasis on (accrual-based) financial reporting might be misplaced.
Originality/value
Public value and performance are multi-faceted concepts. They can be captured by different types of information and evaluated according to different criteria, which will also depend on the category of stakeholders or users who assesses public performance. So far, most literature has considered the financial and non-financial facets of performance as virtually separate. Similarly, in the practice, financial management tends to be decoupled from non-financial performance management. However, this research shows that only by considering their joint interactions we can achieve an accurate representation of what public value really is.
Resumo:
Background: Large-scale biological jobs on high-performance computing systems require manual intervention if one or more computing cores on which they execute fail. This places not only a cost on the maintenance of the job, but also a cost on the time taken for reinstating the job and the risk of losing data and execution accomplished by the job before it failed. Approaches which can proactively detect computing core failures and take action to relocate the computing core's job onto reliable cores can make a significant step towards automating fault tolerance. Method: This paper describes an experimental investigation into the use of multi-agent approaches for fault tolerance. Two approaches are studied, the first at the job level and the second at the core level. The approaches are investigated for single core failure scenarios that can occur in the execution of parallel reduction algorithms on computer clusters. A third approach is proposed that incorporates multi-agent technology both at the job and core level. Experiments are pursued in the context of genome searching, a popular computational biology application. Result: The key conclusion is that the approaches proposed are feasible for automating fault tolerance in high-performance computing systems with minimal human intervention. In a typical experiment in which the fault tolerance is studied, centralised and decentralised checkpointing approaches on an average add 90% to the actual time for executing the job. On the other hand, in the same experiment the multi-agent approaches add only 10% to the overall execution time
Resumo:
The construction industry requires quality control and regulation of its contingent,unpredictable environment. However, taking too much control from workers candisempower and demotivate. In the 1970s Deci and Ryan developed selfdeterminationtheory which states that in order to be intrinsically motivated, threecomponents are necessary - competence, autonomy and relatedness. This study aimsto examine the way in which the three ‘nutriments’ for intrinsic motivation may beundermined by heavy-handed quality control. A critical literature review analysesconstruction, psychological and management research regarding the control andmotivation of workers, using self-determination theory as a framework. Initialfindings show that quality management systems do not always work as designed.Workers perceive that unnecessary, wasteful and tedious counter checking of theirwork implies that they are not fully trusted by management to work without oversight.Control of workers and pressure for continual improvement may lead to resistanceand deception. Controlling mechanisms can break the link between performance andsatisfaction, reducing motivation and paradoxically reducing the likelihood of thequality they intend to promote. This study will lead to a greater understanding ofcontrol and motivation, facilitating further research into improvements in theapplication of quality control to maintain employee motivation.