316 resultados para Peptide bond


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence of an interaction between cholesterol dynamics and Alzheimer's disease (AD), and amyloid ß-peptide may play an important role in this interaction. Aß destabilizes brain membranes and this action of Aß may be dependent on the amount of membrane cholesterol. We tested this hypothesis by examining effects of Aß1-40 on the annular fluidity (i.e., lipid environment adjacent to proteins) and bulk fluidity of rat synaptic plasma membranes (SPM) of the cerebral cortex, cerebellum, and hippocampus using the fluorescent probe pyrene and energy transfer. Amounts of cholesterol and phospholipid of SPM from each brain region were determined. SPM of the cerebellum were significantly more fluid as compared with SPM of the cerebral cortex and hippocampus. Aß significantly increased (P 0.01) annular and bulk fluidity in SPM of cerebral cortex and hippocampus. In contrast, Aß had no effect on annular fluidity and bulk fluidity of SPM of cerebellum. The amounts of cholesterol in SPM of cerebral cortex and hippocampus were significantly higher (P 0.05) than amount of cholesterol in SPM of cerebellum. There was significantly less (P 0.05) total phospholipid in cerebellar SPM as compared with SPM of cerebral cortex. Neuronal membranes enriched in cholesterol may promote accumulation of Aß by hydrophobic interaction, and such an interpretation is consistent with recent studies showing that soluble Aß can act as a seed for fibrillogenesis in the presence of cholesterol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphonopyruvate hydrolase, a novel bacterial carbon-phosphorus bond cleavage enzyme, was purified to homogeneity by a series of chromatographic steps from cell extracts of a newly isolated environmental strain of Variovorax sp. Pal2. The enzyme was inducible in the presence of phosphonoalanine or phosphonopyruvate; unusually, its expression was independent of the phosphate status of the cell. The native enzyme had a molecular mass of 63 kDa with a subunit mass of 31.2 kDa. Activity of purified phosphonopyruvate hydrolase was Co2+-dependent and showed a pH optimum of 6.7–7.0. The enzyme had a Km of 0.53 mM for its sole substrate, phosphonopyruvate, and was inhibited by the analogues phosphonoformic acid, 3-phosphonopropionic acid, and hydroxymethylphosphonic acid. The nucleotide sequence of the phosphonopyruvate hydrolase structural gene indicated that it is a member of the phosphoenolpyruvate phosphomutase/isocitrate lyase superfamily with 41% identity at the amino acid level to the carbon-to-phosphorus bond-forming enzyme phosphoenolpyruvate phosphomutase from Tetrahymena pyriformis. Thus its apparently ancient evolutionary origins differ from those of each of the two carbon-phosphorus hydrolases that have been reported previously; phosphonoacetaldehyde hydrolase is a member of the haloacetate dehalogenase family, whereas phosphonoacetate hydrolase belongs to the alkaline phosphatase superfamily of zinc-dependent hydrolases. Phosphonopyruvate hydrolase is likely to be of considerable significance in global phosphorus cycling, because phosphonopyruvate is known to be a key intermediate in the formation of all naturally occurring compounds that contain the carbon-phosphorus bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian skin secretions are rich in antimicrobial peptides that act as important components of an innate immune system. Here, we describe a novel “shotgun” skin peptide precursor cloning technique that facilitates rapid access to these genetically encoded molecules and effects their subsequent identification and structural characterization from the secretory peptidome. Adopting this approach on a skin secretion-derived library from a hitherto unstudied Chinese species of frog, we identified a family of novel antimicrobial peptide homologs, named pelophylaxins, that belong to previously identified families (ranatuerins, brevinins and temporins) found predominantly in the skin secretions from frogs of the genus Rana. These data further substantiate the scientifically robust nature of applying parallel transcriptome and peptidome analyses on frog defensive skin secretions that can be obtained in a non-invasive, non-destructive manner. In addition, the present data illustrate that rapid structural characterization of frog skin secretion peptides can be achieved from an unstudied species without prior knowledge of primary structures of endogenous peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The defensive skin secretions of amphibians are a rich source of bioactive peptides. Here we describe a rapid technique for skin granular gland transcriptome cloning from a surrogate tissue-the secretion itself. cDNA libraries were constructed from lyophilized skin secretion from each of the Chinese frogs (Rana schmackeri, Rana versabilis, and Rana plancyi fukienensis) using magnetic oligo(dT) bead-captured polyadenylated mRNA as templates. Specific esculentin cDNAs were amplified by 3'-RACE using a degenerate primer designed for a consensus nucleotide sequence in the 5' untranslated region of previously characterized ranid frog peptide cDNAs. The cloned cDNAs were found to encode the antimicrobial peptides esculentins 1 and 2 from each of the species examined. The presence of predicted peptide structures in skin secretions was confirmed by MALDI-TOF mass spectrometry and automated Edman degradation. This experimental approach can thus rapidly expedite parallel transcriptome and peptidome analysis of amphibian granular gland secretions without harming or sacrificing donor animals.