132 resultados para Pathogenic Bacteria
Resumo:
Rationale: Pulmonary infection in cystic ?brosis (CF) is polymicrobial and it is possible that anaerobic bacteria, not detected by routine aerobic culture methods, reside within infected anaerobic airway
mucus.
Objectives: To determine whether anaerobic bacteria are present in the sputum of patients with CF.
Methods: Sputum samples were collected from clinically stable adults with CF and bronchoalveolar lavage ?uid (BALF) samples from children with CF. Induced sputum samples were collected from healthy volunteers who did not have CF. All samples were processed using anaerobic bacteriologic techniques and bacteria within the samples were quanti?ed and identi?ed.
Measurements and Main Results: Anaerobic species primarily within the genera Prevotella,Veillonella, Propionibacterium, andActinomyces were isolated in high numbers from 42 of 66 (64%) sputum samples from adult patients with CF. Colonization with Pseudomonas aeruginosa signi?cantly increased the likelihood that anaerobic bacteria would be present in the sputum. Similar anaerobic species were identi?ed in BALF from pediatric patients with CF. Although anaerobes were detected in induced sputum samples from 16 of 20 volunteers, they were present in much lower numbers and were
generally different species compared with those detected in CF sputum. Species-dependent differences in the susceptibility of the anaerobes to antibiotics with known activity against anaerobes were apparent with all isolates susceptible to meropenem.
Conclusions: A range of anaerobic species are present in large numbers in the lungs of patients with CF. If these anaerobic bacteria are contributing signi?cantly to infection and in?ammation in the CF
lung, informed alterations to antibiotic treatment to target anaerobes, in addition to the primary infecting pathogens, may improve management.
Resumo:
Direct and indirect evidence, Of unexpected stereoselective reductase-catalysed deoxygenations of sulfoxides, was found. The deoxygenations proceeded simultaneously, with the expected dioxygenase-catalysed asymmetric sulfoxidation of sulfides, during some biotransformations with the aerobic bacterium Pseudomonas putida UV4. Stereoselective reductase-catalysed asymmetric deoxygenation of racemic alkylaryl, dialkyl and phenolic sulfoxides was observed, without evidence of the reverse sulfoxidation reaction, using anaerobic bacterial strains. A purified dimethyl sulfoxide reductase, obtained from the intact cells of the anaerobic bacterium Citrobacter braakii DMSO 11, yielded, from the corresponding racemates, enantiopure alkylaryl sulfoxide and thiosulfinate samples.
Resumo:
Phosphonates are organic compounds that contain a C-P bond and are a poorly characterized component of the marine phosphorus cycle. They may represent a potential source of bioavailable phosphorus, particularly in oligotrophic conditions. This study has investigated the distribution of the phnA gene which encodes phosphonoacetate hydrolase, the enzyme that mineralizes phosphonoacetate. Using newly designed degenerate primers targeting the phnA gene we analysed the potential for phosphonoacetate utilization in DNA and cDNA libraries constructed from a phytoplankton bloom in the Western English Channel during July 2006. Total RNA was isolated and reverse transcribed and phosphonoacetate hydrolase (phnA) transcripts were PCR amplified from the cDNA with the degenerate primers, cloned and sequenced. Phylogenetic analysis demonstrated considerable diversity with 14 sequence types yielding five unique phnA protein groups. We also identified 28 phnA homologues in a 454-pyrosequencing metagenomic and metatranscriptomic study from a coastal marine mesocosm, indicating that > 3% of marine bacteria in this study contained phnA. phnA homologues were also present in a metagenomic fosmid library from this experiment. Finally, cultures of four isolates of potential coral pathogens belonging to the Vibrionaceae contained the phnA gene. In the laboratory, these isolates were able to grow with phosphonoacetate as sole P and C source. The fact that the capacity to utilize phosphonoacetate was evident in each of the three coastal environments suggests the potential for widespread utilization of this bioavailable P source.
Resumo:
Despite compromised T cell antigen receptor (TCR) signaling, mice in which tyrosine 136 of the adaptor linker for activation of T cells (LAT) was constitutively mutated (Lat(Y136F) mice) accumulate CD4(+) T cells that trigger autoimmunity and inflammation. Here we show that equipping postthymic CD4(+) T cells with LATY136F molecules or rendering them deficient in LAT molecules triggers a lymphoproliferative disorder dependent on prior TCR engagement. Therefore, such disorders required neither faulty thymic T cell maturation nor LATY136F molecules. Unexpectedly, in CD4(+) T cells recently deprived of LAT, the proximal triggering module of the TCR induced a spectrum of protein tyrosine phosphorylation that largely overlapped the one observed in the presence of LAT. The fact that such LAT-independent signals result in lymphoproliferative disorders with excessive cytokine production demonstrates that LAT constitutes a key negative regulator of the triggering module and of the LAT-independent branches of the TCR signaling cassette.