227 resultados para Partially coherent beams
Resumo:
Intense, few-femtosecond pulse technology has enabled studies of the fastest vibrational relaxation processes. The hydrogen group vibrations can be imaged and manipulated using intense infrared pulses. Through numerical simulation, we demonstrate an example of ultrafast coherent control that could be effected with current experimental facilities, and observed using high-resolution time-of-flight spectroscopy. The proposal is a pump-probe-type technique to manipulate the D2+ ion with ultrashort pulse sequences. The simulations presented show that vibrational selection can be achieved through pulse delay. We find that the vibrational system can be purified to a two-level system thus realizing a vibrational qubit. A novel scheme for the selective transfer of population between these two levels, based on a Raman process and conditioned upon the delay time of a second control-pulse is outlined, and may enable quantum encoding with this system.
Resumo:
A comparative study of models used to predict contaminant dispersion in a partially stratified room is presented. The experiments were carried out in a ventilated test room, with an initially evenly dispersed pollutant. Air was extracted from the outlet in the ceiling of the room at 1 and 3 air changes per hour. A small temperature difference between the top and bottom of the room causes very low air velocities, and higher concentrations, in the lower half of the room. Grid-independent CFD calculations were compared with predictions from a zonal model and from CFD using a very coarse grid. All the calculations show broadly similar contaminant concentration decay rates for the three locations monitored in the experiments, with the zonal model performing surprisingly well. For the lower air change rate, the models predict a less well mixed contaminant distribution than the experimental measurements suggest. With run times of less than a few minutes, the zonal model is around two orders of magnitude faster than coarse-grid CFD and could therefore be used more easily in parametric studies and sensitivity analyses. For a more detailed picture of internal dispersion, a CFD study using coarse and standard grids may be more appropriate.
Resumo:
The emission characteristics of intense laser driven protons are controlled using ultrastrong (of the order of 10(9) V/m) electrostatic fields varying on a few ps time scale. The field structures are achieved by exploiting the high potential of the target (reaching multi-MV during the laser interaction). Suitably shaped targets result in a reduction in the proton beam divergence, and hence an increase in proton flux while preserving the high beam quality. The peak focusing power and its temporal variation are shown to depend on the target characteristics, allowing for the collimation of the inherently highly divergent beam and the design of achromatic electrostatic lenses.
Resumo:
This paper reviews recent experimental activity in the area of optimization, control, and application of laser accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l’Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered microlens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted
protons and select monochromatic beam lets out of the broad spectrum beam. This approach could be advantageous in view
of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and
applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses.
Resumo:
The reaction mechanism and the rate-determining step (RDS) of the isomerisation of n-alkanes (C-4-C-6) over partially reduced MoO3 catalysts were studied through the effects of the addition of an alkene isomerisation catalyst (i.e. CoAlPO- 11). When an acidic CoAlPO- 11 sample was mechanically mixed with the MoO3, a decrease of the induction period and an increase of the steady-state conversion of n-butane to isobutane were observed. These data support previous assumptions that a bifunctional mechanism occurred over the partially reduced MoO3 (a complex nanoscale mixture of oxide-based phases) during n-butane isomerisation and that the RDS was the skeletal isomerisation of the linear butene intermediates. The only promotional effect of CoAlPO-11 on the activity of partially reduced MoO3 for C-5-C-6 alkane hydroisomerisation was a reduction of the induction period, as the RDS at steady-state conditions appeared to be dehydrogenation of the alkane in this case. However, lower yields of branched isomers were observed in this case, the reason of which is yet unclear. (c) 2005 Elsevier B.V. All rights reserved.