64 resultados para Partial least squares


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a multiloop robust control strategy is proposed based on H∞ control and a partial least squares (PLS) model (H∞_PLS) for multivariable chemical processes. It is developed especially for multivariable systems in ill-conditioned plants and non-square systems. The advantage of PLS is to extract the strongest relationship between the input and the output variables in the reduced space of the latent variable model rather than in the original space of the highly dimensional variables. Without conventional decouplers, the dynamic PLS framework automatically decomposes the MIMO process into multiple single-loop systems in the PLS subspace so that the controller design can be simplified. Since plant/model mismatch is almost inevitable in practical applications, to enhance the robustness of this control system, the controllers based on the H∞ mixed sensitivity problem are designed in the PLS latent subspace. The feasibility and the effectiveness of the proposed approach are illustrated by the simulation results of a distillation column and a mixing tank process. Comparisons between H∞_PLS control and conventional individual control (either H∞ control or PLS control only) are also made

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the study was to investigate the potential of a metabolomics platform to distinguish between pigs treated with ronidazole, dimetridazole and metronidazole and non-medicated animals (controls), at two withdrawal periods (day 0 and 5). Livers from each animal were biochemically profiled using UHPLC–QTof-MS in ESI+ mode of acquisition. Several Orthogonal Partial Least Squares-Discriminant Analysis models were generated from the acquired mass spectrometry data. The models classified the two groups control and treated animals. A total of 42 ions of interest explained the variation in ESI+. It was possible to find the identity of 3 of the ions and to positively classify 4 of the ionic features, which can be used as potential biomarkers of illicit 5-nitroimidazole abuse. Further evidence of the toxic mechanisms of 5-nitroimidazole drugs has been revealed, which may be of substantial importance as metronidazole is widely used in human medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is part of a special issue of Applied Geochemistry focusing on reliable applications of compositional multivariate statistical methods. This study outlines the application of compositional data analysis (CoDa) to calibration of geochemical data and multivariate statistical modelling of geochemistry and grain-size data from a set of Holocene sedimentary cores from the Ganges-Brahmaputra (G-B) delta. Over the last two decades, understanding near-continuous records of sedimentary sequences has required the use of core-scanning X-ray fluorescence (XRF) spectrometry, for both terrestrial and marine sedimentary sequences. Initial XRF data are generally unusable in ‘raw-format’, requiring data processing in order to remove instrument bias, as well as informed sequence interpretation. The applicability of these conventional calibration equations to core-scanning XRF data are further limited by the constraints posed by unknown measurement geometry and specimen homogeneity, as well as matrix effects. Log-ratio based calibration schemes have been developed and applied to clastic sedimentary sequences focusing mainly on energy dispersive-XRF (ED-XRF) core-scanning. This study has applied high resolution core-scanning XRF to Holocene sedimentary sequences from the tidal-dominated Indian Sundarbans, (Ganges-Brahmaputra delta plain). The Log-Ratio Calibration Equation (LRCE) was applied to a sub-set of core-scan and conventional ED-XRF data to quantify elemental composition. This provides a robust calibration scheme using reduced major axis regression of log-ratio transformed geochemical data. Through partial least squares (PLS) modelling of geochemical and grain-size data, it is possible to derive robust proxy information for the Sundarbans depositional environment. The application of these techniques to Holocene sedimentary data offers an improved methodological framework for unravelling Holocene sedimentation patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ammonia oxidation reaction on supported polycrystalline platinum catalyst was investigated in an aluminum-based microreactor. An extensive set of reactions was included in the chemical reactor modeling to facilitate the construction of a kinetic model capable of satisfactory predictions for a wide range of conditions (NH3 partial pressure, 0.01-0.12 atm; O-2 partial pressure, 0.10-0.88 atm; temperature, 523-673 K; contact time, 0.3-0.7 ms). The elementary surface reactions used in developing the mechanism were chosen based on the literature data concerning ammonia oxidation on a Pt catalyst. Parameter estimates for the kinetic model were obtained using multi-response least squares regression analysis using the isothermal plug-flow reactor approximation. To evaluate the model, the behavior of a microstructured reactor was simulated by means of a complete Navier-Stokes model accounting for the reactions on the catalyst surface and the effect of temperature on the physico-chemical properties of the reacting mixture. In this way, the effect of the catalytic wall temperature non-uniformity and the effect of a boundary layer on the ammonia conversion and selectivity were examined. After further optimization of appropriate kinetic parameters, the calculated selectivities and product yields agree very well with the values actually measured in the microreactor. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation sDEd approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The characterization of thermocouple sensors for temperature measurement in varying-flow environments is a challenging problem. Recently, the authors introduced novel difference-equation-based algorithms that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. In particular, a linear least squares (LS) lambda formulation of the characterization problem, which yields unbiased estimates when identified using generalized total LS, was introduced. These algorithms assume that time constants do not change during operation and are, therefore, appropriate for temperature measurement in homogenous constant-velocity liquid or gas flows. This paper develops an alternative ß-formulation of the characterization problem that has the major advantage of allowing exploitation of a priori knowledge of the ratio of the sensor time constants, thereby facilitating the implementation of computationally efficient algorithms that are less sensitive to measurement noise. A number of variants of the ß-formulation are developed, and appropriate unbiased estimators are identified. Monte Carlo simulation results are used to support the analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract An HPLC method has been developed and validated for the determination of spironolactone, 7a-thiomethylspirolactone and canrenone in paediatric plasma samples. The method utilises 200 µl of plasma and sample preparation involves protein precipitation followed by Solid Phase Extraction (SPE). Determination of standard curves of peak height ratio (PHR) against concentration was performed by weighted least squares linear regression using a weighting factor of 1/concentration2. The developed method was found to be linear over concentration ranges of 30–1000 ng/ml for spironolactone and 25–1000 ng/ml for 7a-thiomethylspirolactone and canrenone. The lower limit of quantification for spironolactone, 7a-thiomethylspirolactone and canrenone were calculated as 28, 20 and 25 ng/ml, respectively. The method was shown to be applicable to the determination of spironolactone, 7a-thiomethylspirolactone and canrenone in paediatric plasma samples and also plasma from healthy human volunteers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives: To identify demographic and socioeconomic determinants of need for acute hospital treatment at small area level. To establish whether there is a relation between poverty and use of inpatient services. To devise a risk adjustment formula for distributing public funds for hospital services using, as far as possible, variables that can be updated between censuses. Design: Cross sectional analysis. Spatial interactive modelling was used to quantify the proximity of the population to health service facilities. Two stage weighted least squares regression was used to model use against supply of hospital and community services and a wide range of potential needs drivers including health, socioeconomic census variables, uptake of income support and family credit, and religious denomination. Setting: Northern Ireland. Main outcome measure: Intensity of use of inpatient services. Results: After endogeneity of supply and use was taken into account, a statistical model was produced that predicted use based on five variables: income support, family credit, elderly people living alone, all ages standardised mortality ratio, and low birth weight. The main effect of the formula produced is to move resources from urban to rural areas. Conclusions: This work has produced a population risk adjustment formula for acute hospital treatment in which four of the five variables can be updated annually rather than relying on census derived data. Inclusion of the social security data makes a substantial difference to the model and to the results produced by the formula.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The identification of nonlinear dynamic systems using linear-in-the-parameters models is studied. A fast recursive algorithm (FRA) is proposed to select both the model structure and to estimate the model parameters. Unlike orthogonal least squares (OLS) method, FRA solves the least-squares problem recursively over the model order without requiring matrix decomposition. The computational complexity of both algorithms is analyzed, along with their numerical stability. The new method is shown to require much less computational effort and is also numerically more stable than OLS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a fast and efficient hybrid algorithm for selecting exoplanetary candidates from wide-field transit surveys. Our method is based on the widely used SysRem and Box Least-Squares (BLS) algorithms. Patterns of systematic error that are common to all stars on the frame are mapped and eliminated using the SysRem algorithm. The remaining systematic errors caused by spatially localized flat-fielding and other errors are quantified using a boxcar-smoothing method. We show that the dimensions of the search-parameter space can be reduced greatly by carrying out an initial BLS search on a coarse grid of reduced dimensions, followed by Newton-Raphson refinement of the transit parameters in the vicinity of the most significant solutions. We illustrate the method's operation by applying it to data from one field of the SuperWASP survey, comprising 2300 observations of 7840 stars brighter than V = 13.0. We identify 11 likely transit candidates. We reject stars that exhibit significant ellipsoidal variations caused indicative of a stellar-mass companion. We use colours and proper motions from the Two Micron All Sky Survey and USNO-B1.0 surveys to estimate the stellar parameters and the companion radius. We find that two stars showing unambiguous transit signals pass all these tests, and so qualify for detailed high-resolution spectroscopic follow-up.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An effective ellipsometric technique to determine parameters that characterize second-harmonic optical and magneto-optical effects in centrosymmetric media within the electric-dipole approximation is proposed and outlined in detail. The parameters, which are ratios of components of the nonlinear-surface-susceptibility tensors, are obtained from experimental data related to the state of polarization of the second-harmonic-generated radiation as a function of the angle between the plane of incidence and the polarization plane of the incident, linearly polarized, fundamental radiation. Experimental details of the technique are described. A corresponding theoretical model is given as an example for a single isotropic surface assuming polycrystalline samples. The surfaces of air-Au and air-Ni (in magnetized and demagnetized states) have been investigated ex situ in ambient air, and the results are presented. A nonlinear, least-squares-minimization fitting procedure between experimental data and theoretical formulas has been shown to yield realistic, unambiguous results for the ratios corresponding to each of the above materials. Independent methods for verifying the validity of the fitting parameters are also presented. The influence of temporal variations at the surfaces on the state of polarization (due to adsorption, contamination, or oxidation) is also illustrated for the demagnetized air-Ni surface. (C) 2005 Optical Society of America

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The characterization of thermocouple sensors for temperature measurement in variable flow environments is a challenging problem. In this paper, novel difference equation-based algorithms are presented that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. Linear and non-linear least squares formulations of the characterization problem are introduced and compared in terms of their computational complexity, robustness to noise and statistical properties. With the aid of this analysis, least squares optimization procedures that yield unbiased estimates are identified. The main contribution of the paper is the development of a linear two-parameter generalized total least squares formulation of the sensor characterization problem. Monte-Carlo simulation results are used to support the analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have performed photometric observations of nearly seven million stars with 8 <V <15 with the SuperWASP-North instrument from La Palma between 2004 May to September. Fields in the right ascension range 17-18h, yielding over 185000 stars with sufficient quality data, have been searched for transits using a modified box least-squares (BLS) algorithm. We find a total of 58 initial transiting candidates which have high signal-to-noise ratio in the BLS, show multiple transit-like dips and have passed visual inspection. Analysis of the blending and the inferred planetary radii for these candidates leave, a total of seven transiting planet candidates which pass all the tests plus four which pass the majority. We discuss the derived parameters for these candidates and their properties and comment on the implications for future transit searches.