42 resultados para Packing, transportation and storage
Resumo:
Impeller speed is one of the most crucial process variables that affect the properties of the granules produced in a high-shear granulator. Several reports can be found in literature that discuss the influence of impeller speed on the granules size. For instance some researchers like Knight report an increase of granule size with impeller speed [1] and [2], while others (Scheaefer et al. and Ramaker et al.) observed a decrease of granules size with increasing impeller speed [3] and [4]. However there is limited work reported in literature on the effect of the impeller speed on the mechanical properties of granules. Mechanical properties are important as they affect the performance of the granules on the other downstream process such as transportation and handling. The work reported here serves to address the missing in knowledge gap regarding the influence of impeller speed on mechanical properties granules. How the granulation system responds to the changes in the impeller speeds depends on binder that is used in the process. For this reason the two extreme cases, of a low viscosity binder system and high viscosity binder system are considered in this research. For low viscosity binder system it was observed that the granule size decreased with increasing impeller speed whilst for the high viscosity binder system the opposite was observed by Knight [1]. The granule strength, the Young's modulus and yield strength of the high viscosity granules increased with increasing impeller speed where as the opposite trends were observed for the low viscosity binder granules.
Resumo:
Soils and saprolites developed from interbedded shales and limestones of the Conasauga Group are widespread in the Valley and Ridge Province of East Tennessee. Thin sections from four soil profiles were examined by petrographic and scanning electron microscopy including backscatter electron and energy-dispersive X-ray analyses. Iron and manganese released by weathering had migrated differentially downward and precipitated as crystalline and noncrystalline oxides. Oxides were observed as nodules, granular particulates, pore fillings, and coatings on other minerals, packing voids, vesicles, channels, and chambers. Iron oxides formed predominantly as coatings on packing-void walls and on laminated clays in vesicles and channels. Manganese oxides occurred as an early replacement phase of packing voids and of fracture-filling carbonate minerals. Iron oxides were dominant in moderately well-drained and oxidized horizons of the soil solum, whereas manganese oxides were abundant in the oxidized and moderately leached saprolite zone where the water table fluctuates seasonally. Therefore, a manganese enrichment zone, on a bulk soil basis, occurred generally below the iron oxide zone in the soil profile. Such differential migration and accumulation of iron and manganese have been controlled by localized soil microenvironments. Micromorphologic features observed in this study are important in land-use evaluation for hazardous waste disposal. © 1990.
Resumo:
Objective To prospectively evaluate and quantify the efficacy of cadaveric fascia lata (CFL) as an allograft material in pubovaginal sling placement to treat stress urinary incontinence (SUI).
Patients and methods Thirty-one women with SUI (25 type II and six type III; mean age 63 years, range 40-75) had a CFL pubovaginal sling placed transvaginally. The operative time, blood loss, surgical complications and mean hospital stay were all documented. Before and at 4 months and 1 year after surgery each patient completed a 3-day voiding diary and validated voiding questionnaires (functional inquiry into voiding habits, Urogenital Distress Inventory and Incontinence Impact Questionnaire, including visual analogue scales).
Results The mean (range) operative time was 71 (50-120) min, blood loss 78.7 (20-250) mL and hospital stay 1.2 (1-2) days; there were no surgical complications. Over the mean follow-up of 13.5 months, complete resolution of SUI was reported by 29 (93%) patients. Overactive bladder symptoms were present in 23 (74%) patients before surgery, 21 (68%) at 4 months and two (6%) at 1 year; 80% of patients with low (<15 cmH (2) O) voiding pressures before surgery required self-catheterization afterward, as did 36% at 4 months, but only one (3%) at 1 year. Twenty-four (77%) patients needed to adopt specific postures to facilitate voiding. After surgery there was a significant reduction in daytime frequency, leakage episodes and pad use (P <0.05). The severity of leak and storage symptoms was also significantly less (P <0.002), whilst the severity of obstructive symptoms remained unchanged. Mean subjective levels of improvement were 69% at 4 months and 85% at 1 year, with corresponding objective satisfaction levels of 61% and 69%, respectively. At 1 year, approximate to 80% of the patients said they would undergo the procedure again and/or recommend it to a friend.
Conclusion Placing a pubovaginal sling of CFL allograft is a highly effective, safe surgical approach for resolving SUI, with a short operative time and rapid recovery. Storage symptoms are significantly improved, and subjective improvement and satisfaction rates are high.
Resumo:
The use of anodic stripping voltammetry (ASV)has been proven in the past to be a precise and sensitive analytical method with an excellent limit of detection. Electrochemical sensors could help to avoid expensive and time consuming procedures as sample taking and storage and provide a both sensitive and reliable method for the direct monitoring of heavy metals in the aquatic environment. Solid electrodes which have been used in this work, were produced using previously developed methods. Commercially available and newly designed, screen printed carbon and gold plated working electrodes (WE) were compared. Good results were achieved with the screen printed and plated electrodes under conditions optimized for each electrode material. The electrode stability, reproducibility of single measurements and the limit of detection obtained for Pb were satisfactory (3*10-6mol/l on screen printed carbon WEs after 60 s of deposition and 6*10-6 mol/l on gold plated WEs after 5 min of deposition). Complete 3-electrode-sets (counter, reference and working electrode) were screen printed on different substrates (glass, polycarbonate and alumina). Also here, both carbon and gold were used as WE. Using 3-electrode-sets with a gold plated WE on glass was a limit of detection of 7*10-7 mol/l was achieved after only 60 s of deposition.
Resumo:
The papers in this special issue focus on the topic of location awareness for radio and networks. Localization-awareness using radio signals stands to revolutionize the fields of navigation and communication engineering. It can be utilized to great effect in the next generation of cellular networks, mining applications, health-care monitoring, transportation and intelligent highways, multi-robot applications, first responders operations, military applications, factory automation, building and environmental controls, cognitive wireless networks, commercial and social network applications, and smart spaces. A multitude of technologies can be used in location-aware radios and networks, including GNSS, RFID, cellular, UWB, WLAN, Bluetooth, cooperative localization, indoor GPS, device-free localization, IR, Radar, and UHF. The performances of these technologies are measured by their accuracy, precision, complexity, robustness, scalability, and cost. Given the many application scenarios across different disciplines, there is a clear need for a broad, up-to-date and cogent treatment of radio-based location awareness. This special issue aims to provide a comprehensive overview of the state-of-the-art in technology, regulation, and theory. It also presents a holistic view of research challenges and opportunities in the emerging areas of localization.
Resumo:
Motivated by the need for designing efficient and robust fully-distributed computation in highly dynamic networks such as Peer-to-Peer (P2P) networks, we study distributed protocols for constructing and maintaining dynamic network topologies with good expansion properties. Our goal is to maintain a sparse (bounded degree) expander topology despite heavy {\em churn} (i.e., nodes joining and leaving the network continuously over time). We assume that the churn is controlled by an adversary that has complete knowledge and control of what nodes join and leave and at what time and has unlimited computational power, but is oblivious to the random choices made by the algorithm. Our main contribution is a randomized distributed protocol that guarantees with high probability the maintenance of a {\em constant} degree graph with {\em high expansion} even under {\em continuous high adversarial} churn. Our protocol can tolerate a churn rate of up to $O(n/\poly\log(n))$ per round (where $n$ is the stable network size). Our protocol is efficient, lightweight, and scalable, and it incurs only $O(\poly\log(n))$ overhead for topology maintenance: only polylogarithmic (in $n$) bits needs to be processed and sent by each node per round and any node's computation cost per round is also polylogarithmic. The given protocol is a fundamental ingredient that is needed for the design of efficient fully-distributed algorithms for solving fundamental distributed computing problems such as agreement, leader election, search, and storage in highly dynamic P2P networks and enables fast and scalable algorithms for these problems that can tolerate a large amount of churn.
Resumo:
The need for fast response demand side participation (DSP) has never been greater due to increased wind power penetration. White domestic goods suppliers are currently developing a `smart' chip for a range of domestic appliances (e.g. refrigeration units, tumble dryers and storage heaters) to support the home as a DSP unit in future power systems. This paper presents an aggregated population-based model of a single compressor fridge-freezer. Two scenarios (i.e. energy efficiency class and size) for valley filling and peak shaving are examined to quantify and value DSP savings in 2020. The analysis shows potential peak reductions of 40 MW to 55 MW are achievable in the Single wholesale Electricity Market of Ireland (i.e. the test system), and valley demand increases of up to 30 MW. The study also shows the importance of the control strategy start time and the staggering of the devices to obtain the desired filling or shaving effect.
Resumo:
Purpose: To evaluate preoperative characteristics and follow-up in rural China after trabeculectomy, the primary treatment for glaucoma there. Methods: Patients undergoing trabeculectomy at 14 rural hospitals in Guangdong and Guangxi Provinces and their doctors completed questionnaires concerning clinical and sociodemographic information, transportation, and knowledge and attitudes about glaucoma. Follow-up after surgery was assessed as cumulative score (1 week: 10 points, 2 weeks: 7 points, 1 month: 5 points). Results Among 212 eligible patients, mean preoperative presenting acuity in the operative eye was 6/120, with 61.3% (n=130) blind (≤6/60). Follow-up rates were 60.8% (129/212), 75.9% (161/212) and 26.9% (57/212) at 1 week, 2 weeks and 1 month, respectively. Patient predictors of poor follow-up included elementary education or less (OR=0.37, 95% CI 0.20 to 0.70, p=0.002), believing follow-up was not important (OR=0.62, 95% CI 0.41 to 0.94, p=0.02), lack of an accompanying person (OR=0.14, 95% CI 0.07 to 0.29, p<0.001), family annual income <US$800 (OR=0.28, 95% CI 0.11 to 0.72, p=0.008) and not requiring removal of scleral flap sutures postoperatively (OR=0.11, 95% CI 0.06 to 0.22, p<0.001). Age, sex, employment, travel distance/time/costs, patient preoperative clinical factors and physician factors were unassociated with follow-up. Conclusions: Follow-up after 2 weeks was inadequate to provide optimal clinical care, and surgery is being applied too late to avoid blindness in the majority of patients. Earlier surgery, support for return visits and better explanations of the importance of follow-up are needed. Directing all patients to return for possible scleral flap suture removal may be a valid strategy to improve follow-up.
Resumo:
Food preparation and storage behaviors in the home deviating from the ‘best practice’ food safety recommendations may result in food borne illnesses. Currently, there are limited tools available to fully evaluate the consumer knowledge, perceptions and behavior in the area of refrigerator safety. The current study aimed to develop a valid and reliable tool in the form of a questionnaire (CFSQCRSQ) for assessing systematically all these aspects. Items relating to refrigerator safety knowledge (n=17), perceptions (n=46), reported behavior (n=30) were developed and pilot tested by an expert reference group and various consumer groups to assess face and content validity (n=20), item difficulty and item consistency (n=55) and construct validity (n=23). The findings showed that the CFSQCRSQ has acceptable face and content validity with acceptable levels of item difficulty. Item consistency was observed for 12 out of 15 refrigerator safety knowledge. Further, all five of the subscales of consumer perceptions of refrigerator safety practices relating to risk of developing foodborne disease food poisoning showed acceptable internal consistency (Cronbach’s α value > 0.8). Construct validity of the CFSQCRSQ was shown to be very good (p=0.022). The CFSQCRSQ exhibited acceptable test-retest reliability at 14 days with majority of knowledge items (93.3%) and reported behavior items (96.4%) having correlation coefficients of greater than 0.70. Overall, the CFSQCRSQ was deemed valid and reliable in assessing refrigerator safety knowledge and behavior and therefore has the potential for future use in identifying groups of individuals at increased risk of deviating from recommended refrigerator safety practices as well as the assessment of refrigerator safety knowledge, behavior for use before and after an intervention.
Resumo:
In the 21st century, information has become the most valuable resource that is available to modern societies. Thus, great efforts have been made to develop new information processing and storage techniques. Chemistry can offer a wide variety of computing paradigms that are closely related to the natural processes found in living organisms (e.g., in the nervous systems of animals). Moreover, these phenomena cannot be reproduced easily by solely using silicon-based technology. Other great advantages of molecular-scale systems include their simplicity and the diversity of interactions that occur among them. Thus, devices constructed using chemical entities may be programmed to deal with different information carriers (photons, electrons, ions, and molecules), possibly surpassing the capabilities of classic electronic circuits.
Resumo:
Rapid and affordable tumor molecular profiling has led to an explosion of clinical and genomic data poised to enhance the diagnosis, prognostication and treatment of cancer. A critical point has now been reached at which the analysis and storage of annotated clinical and genomic information in unconnected silos will stall the advancement of precision cancer care. Information systems must be harmonized to overcome the multiple technical and logistical barriers to data sharing. Against this backdrop, the Global Alliance for Genomic Health (GA4GH) was established in 2013 to create a common framework that enables responsible, voluntary and secure sharing of clinical and genomic data. This Perspective from the GA4GH Clinical Working Group Cancer Task Team highlights the data-aggregation challenges faced by the field, suggests potential collaborative solutions and describes how GA4GH can catalyze a harmonized data-sharing culture.
Resumo:
Nano-scale touch screen thin film have not been thoroughly investigated in terms of dynamic impact analysis under various strain rates. This research is focused on two different thin films, Zinc Oxide (ZnO) film and Indium Tin Oxide (ITO) film, deposited on Polyethylene Terephthalate (PET) substrate for the standard touch screen panels. Dynamic Mechanical Analysis (DMA) was performed on the ZnO film coated PET substrates. Nano-impact (fatigue) testing was performed on ITO film coated PET substrates. Other analysis includes hardness and the elastic modulus measurements, atomic force microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and the Scanning Electron Microscopy (SEM) of the film surface.
Ten delta of DMA is described as the ratio of loss modulus (viscous properties) and storage modulus (elastic properties) of the material and its peak against time identifies the glass transition temperature (Tg). Thus, in essence the Tg recognizes changes from glassy to rubber state of the material and for our sample ZnO film, Tg was found as 388.3 K. The DMA results also showed that the Ten delta curve for Tg increases monotonically in the viscoelastic state (before Tg) and decreases sharply in the rubber state (after Tg) until recrystallization of ZnO takes place. This led to an interpretation that enhanced ductility can be achieved by negating the strength of the material.
For the nano-impact testing using the ITO coated PET, the damage started with the crack initiation and propagation. The interpretation of the nano-impact results depended on the characteristics of the loading history. Under the nano-impact loading, the surface structure of ITO film suffered from several forms of failure damages that range from deformation to catastrophic failures. It is concluded that in such type of application, the films should have low residual stress to prevent deformation, good adhesive strength, durable and good resistance to wear.