36 resultados para Packets


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a Monte Carlo radiative transfer technique for calculating synthetic spectropolarimetry for multidimensional supernova explosion models. The approach utilizes 'virtual-packets' that are generated during the propagation of the Monte Carlo quanta and used to compute synthetic observables for specific observer orientations. Compared to extracting synthetic observables by direct binning of emergent Monte Carlo quanta, this virtual-packet approach leads to a substantial reduction in the Monte Carlo noise. This is not only vital for calculating synthetic spectropolarimetry (since the degree of polarization is typically very small) but also useful for calculations of light curves and spectra. We first validate our approach via application of an idealized test code to simple geometries. We then describe its implementation in the Monte Carlo radiative transfer code ARTIS and present test calculations for simple models for Type Ia supernovae. Specifically, we use the well-known one-dimensional W7 model to verify that our scheme can accurately recover zero polarization from a spherical model, and to demonstrate the reduction in Monte Carlo noise compared to a simple packet-binning approach. To investigate the impact of aspherical ejecta on the polarization spectra, we then use ARTIS to calculate synthetic observables for prolate and oblate ellipsoidal models with Type Ia supernova compositions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Network management tools must be able to monitor and analyze traffic flowing through network systems. According to the OpenFlow protocol applied in Software-Defined Networking (SDN), packets are classified into flows that are searched in flow tables. Further actions, such as packet forwarding, modification, and redirection to a group table, are made in the flow table with respect to the search results. A novel hardware solution for SDN-enabled packet classification is presented in this paper. The proposed scheme is focused on a label-based search method, achieving high flexibility in memory usage. The implemented hardware architecture provides optimal lookup performance by configuring the search algorithm and by performing fast incremental update as programmed the software controller.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The present study aimed to evaluate the precision, ease of use and likelihood of future use of portion size estimation aids (PSEA).

DESIGN: A range of PSEA were used to estimate the serving sizes of a range of commonly eaten foods and rated for ease of use and likelihood of future usage.

SETTING: For each food, participants selected their preferred PSEA from a range of options including: quantities and measures; reference objects; measuring; and indicators on food packets. These PSEA were used to serve out various foods (e.g. liquid, amorphous, and composite dishes). Ease of use and likelihood of future use were noted. The foods were weighed to determine the precision of each PSEA.

SUBJECTS: Males and females aged 18-64 years (n 120).

RESULTS: The quantities and measures were the most precise PSEA (lowest range of weights for estimated portion sizes). However, participants preferred household measures (e.g. 200 ml disposable cup) - deemed easy to use (median rating of 5), likely to use again in future (all scored either 4 or 5 on a scale from 1='not very likely' to 5='very likely to use again') and precise (narrow range of weights for estimated portion sizes). The majority indicated they would most likely use the PSEA preparing a meal (94 %), particularly dinner (86 %) in the home (89 %; all P<0·001) for amorphous grain foods.

CONCLUSIONS: Household measures may be precise, easy to use and acceptable aids for estimating the appropriate portion size of amorphous grain foods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1949, P. W. Forsbergh Jr. reported spontaneous spatial ordering in the birefringence patterns seen in flux-grown BaTiO3 crystals [1], under the transmission polarized light microscope [2]. Stunningly regular square-net arrays were often only found within a finite temperature window and could be induced on both heating and cooling, suggesting genuine thermodynamic stability. At the time, Forsbergh rationalized the patterns to have resulted from the impingement of ferroelastic domains, creating a complex tessellation of variously shaped domain packets. However, evidence for the intricate microstructural arrangement proposed by Forsbergh has never been found. Moreover, no robust thermodynamic argument has been presented to explain the region of thermal stability, its occurrence just below the Curie Temperature and the apparent increase in entropy associated with the loss of the Forsbergh pattern on cooling. As a result, despite decades of research on ferroelectrics, this ordering phenomenon and its thermodynamic origin have remained a mystery. In this paper, we re-examine the microstructure of flux-grown BaTiO3 crystals, which show Forsbergh birefringence patterns. Given an absence of any obvious arrays of domain polyhedra, or even regular shapes of domain packets, we suggest an alternative origin for the Forsbergh pattern, in which sheets of orthogonally oriented ferroelastic stripe domains simply overlay one another. We show explicitly that the Forsbergh birefringence pattern occurs if the periodicity of the stripe domains is above a critical value. Moreover, by considering well-established semiempirical models, we show that the significant domain coarsening needed to generate the Forsbergh birefringence is fully expected in a finite window below the Curie Temperature. We hence present a much more straightforward rationalization of the Forsbergh pattern than that originally proposed, in which exotic thermodynamic arguments are unnecessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several studies in the past have revealed that network end user devices are left powered up 24/7 even when idle just for the sake of maintaining Internet connectivity. Network devices normally support low power states but are kept inactive due to their inability to maintain network connectivity. The Network Connectivity Proxy (NCP) has recently been proposed as an effective mechanism to impersonate network connectivity on behalf of high power devices and enable them to sleep when idle without losing network presence. The NCP can efficiently proxy basic networking protocol, however, proxying of Internet based applications have no absolute solution due to dynamic and non-predictable nature of the packets they are sending and receiving periodically. This paper proposes an approach for proxying Internet based applications and presents the basic software architectures and capabilities. Further, this paper also practically evaluates the proposed framework and analyzes expected energy savings achievable under-different realistic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A network connected host is expected to generate/respond to applications and protocols specific messages. Billions of Euro of electricity is wasted to keep idle hosts powered up 24/7 just to maintain network presence. This short paper describes the design of our cooperative Network Connectivity Proxy (NCP) that can impersonate sleeping hosts and responds to packets on their behalf as they were connected and fully operational. Thus, NCP is in fact an efficient approach to reduce network energy waste.