106 resultados para PHOTOMETRY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variables AC Cnc and V363 Aur (=Lanning 10). There is evidence of irradiation on the inner hemisphere of the secondary star in both systems, which we correct for using a model that reproduces the observations remarkably well. We find the radial velocity of the secondary star in AC Cnc to be K-R=176+/-3 km s(-1) and its rotational velocity to be v sin i=135+/-3 km s(-1). From these parameters we obtain masses of M-1=0.76+/-0.03 M-circle dot for the white-dwarf primary and M-2=0.77+/-0.05 M-circle dot for the K2+/-1 V secondary star, giving a mass ratio of q=1.02+/-0.04. We measure the radial and rotational velocities of the G7+/-2V secondary star in V363 Aur to be K-R=168+/-5 km s(-1) and v sin i=143+/-5 km s(-1), respectively. The component masses of V363 Aur are M-1=0.90+/-0.06M(circle dot) and M-2=1.06+/-0.11 M-circle dot giving a mass ratio of q=1.17+/-0.07. The mass ratios for AC Cnc and V363 Aur fall within the theoretical limits for dynamically and thermally stable mass transfer. Both systems are similar to the SW Sex stars, exhibiting single-peaked emission lines with transient absorption features, high-velocity S-wave components and phase-offsets in their radial-velocity curves. The Balmer lines in V363 Aur show a rapid increase in flux around phase 0 followed by a rapid decrease, which we attribute to the eclipse of an optically thick region at the centre of the disc. This model could also account for the behaviour of other SW Sex stars where the Balmer lines show only a shallow eclipse compared to the continuum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the discovery of WASP-13b, a low-mass M-p = 0.46(-0.05)(+0.06) M-J transiting exoplanet with an orbital period of 4.35298 +/- 0.00004 days. The transit has a depth of 9 mmag, and although our follow-up photometry does not allow us to constrain the impact parameter well (0 <b <0.46), with radius in the range R-p similar to 1.06-1.21 R-J the location of WASP-13b in the mass-radius plane is nevertheless consistent with H/He-dominated, irradiated, low core mass and core-free theoretical models. The G1V host star is similar to the Sun in mass (M-* = 1.03(-0.09)(+0.11) M-circle dot) and metallicity ([M/H] = 0.0 +/- 0.2), but is possibly older (8.5(-4.9)(+5.5) Gyr).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results from a search for additional transiting planets in 24 systems already known to contain a transiting planet. We model the transits due to the known planet in each system and subtract these models from light curves obtained with the SuperWASP (Wide Angle Search for Planets) survey instruments. These residual light curves are then searched for evidence of additional periodic transit events. Although we do not find any evidence for additional planets in any of the planetary systems studied, we are able to characterize our ability to find such planets by means of Monte Carlo simulations. Artificially generated transit signals corresponding to planets with a range of sizes and orbital periods were injected into the SuperWASP photometry and the resulting light curves searched for planets. As a result, the detection efficiency as a function of both the radius and orbital period of any second planet is calculated. We determine that there is a good (>50 per cent) chance of detecting additional, Saturn-sized planets in P ~ 10 d orbits around planet-hosting stars that have several seasons of SuperWASP photometry. Additionally, we confirm previous evidence of the rotational stellar variability of WASP-10, and refine the period of rotation. We find that the period of the rotation is 11.91 +/- 0.05 d, and the false alarm probability for this period is extremely low (~10-13).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present observations of two new single-lined eclipsing binaries, both consisting of an Am star and an M-dwarf, discovered by the Wide Angle Search for Planets transit photometry survey. Using WASP photometry and spectroscopic measurements we find that HD 186753B has an orbital period of P=1.9194 days, a mass of M=0.24±0.02~M? and radius of R=0.31+0.06-0.06~R?; and that TCY7096-222-1B has an orbital period of P=8.9582 days, a mass of between 0.29 and 0.54 M? depending on eccentricity and radius of R=0.263+0.02-0.07~R?. We find that the Am stars have relatively low rotational velocities that closely match the orbital velocities of the M-dwarfs, suggesting that they have been “spun-down” by the M-dwarfs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Age-related macular degeneration (AMD) is the most common cause of blindness in older people in developed countries, and risk factors for this condition may be classified as genetic and environmental. Apolipoprotein E is putatively involved in the transport of the macular pigment (MP) carotenoids lutein (L) and zeaxanthin (Z) in serum and may also influence retinal capture of these compounds. This study was designed to investigate the relationship between macular pigment optical density (MPOD) and ApoE genotype. METHODS: This was a cross-sectional study of 302 healthy adult subjects. Dietary intake of L and Z was assessed by food frequency questionnaire, and MPOD was measured by customized heterochromatic flicker photometry. Serum L and Z were measured by HPLC. ApoE genotyping was performed by direct polymerase chain reaction amplification and DNA nucleotide sequencing from peripheral blood. RESULTS: Genotype data were available on 300 of the 302 (99.3%) subjects. The mean (+/- SD) age of the subjects in this study was 47.89 +/- 11.05 (range, 21-66) years. Subjects were classed into one of three ApoE genotype groups, as follows: group 1, epsilon2epsilon2 or epsilon2epsilon3; group 2, epsilon3epsilon3; group 3, epsilon2epsilon4 or epsilon3epsilon4 or epsilon4epsilon4. All three groups were statistically comparable in terms of age, sex, body mass index, cigarette smoking, and dietary and serum levels of L and Z. There was a statistically significant association between ApoE genotype and MPOD. Subjects who had at least one epsilon4 allele had a higher MPOD across the macula than subjects without this allele (group 1 MPOD area, 0.70 +/- 0.40; group 2 MPOD area, 0.67 +/- 0.42; group 3 MPOD area, 0.85 +/- 0.46; one-way ANOVA, P = 0.014. CONCLUSIONS: These results suggest that ApoE genotype status is associated with MPOD. This association may explain, at least in part, the putative protective effect of the epsilon4 allele for AMD and is consistent with the view that apolipoprotein profile influences the transport and/or retinal capture of circulating L and/or Z.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: We investigated whether the predictions and results of Stanishev et al. (2002, A&A, 394, 625) concerning a possible relationship between eclipse depths in PX And and its retrograde disc precession phase, could be confirmed in long term observations made by SuperWASP. In addition, two further CVs (DQ Her and V795 Her) in the same SuperWASP data set were investigated to see whether evidence of superhump periods and disc precession periods were present and what other, if any, long term periods could be detected. Methods: Long term photometry of PX And, V795 Her and DQ Her was carried out and Lomb-Scargle periodogram analysis undertaken on the resulting light curves. For the two eclipsing CVs, PX And and DQ Her, we analysed the potential variations in the depth of the eclipse with cycle number. Results: The results of our period and eclipse analysis on PX And confirm that the negative superhump period is 0.1417 ± 0.0001d. We find no evidence of positive superhumps in our data suggesting that PX And may have been in a low state during our observations. We improve on existing estimates of the disc precession period and find it to be 4.43 ± 0.05d. Our results confirm the predictions of Stanishev et al. (2002). We find that DQ Her does not appear to show a similar variation for we find no evidence of negative superhumps or of a retrograde disc precession. We also find no evidence of positive superhumps or of a prograde disc precession and we attribute the lack of positive superhumps in DQ Her to be due to the high mass ratio of this CV. We do however find evidence for a modulation of the eclipse depth over a period of 100 days which may be linked with solar-type magnetic cycles which give rise to long term photometric variations. The periodogram analysis for V795 Her detected the likely positive superhump period 0.1165d, however, neither the 0.10826d orbital period nor the prograde 1.53d disc precession period were seen. Here though we have found a variation in the periodogram power function at the positive superhump period, over a period of at least 120 days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the light curve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33 V = 8.3, v sini = 86 km s-1). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas-giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit, we directly derive the size of the planet, the inclination and obliquity of its orbital plane and its retrograde orbital motion relative to the spin of the star. This kind of analysis opens the way to studying the formation of planets around a whole new class of young, early-type stars, hence under different physical conditions and generally in an earlier stage of formation than in sharp-lined late-type stars. The reflex orbital motion of the star caused by the transiting planet is small, yielding an upper mass limit of 4.1MJupiter on the planet. We also find evidence of a third body of substellar mass in the system, which may explain the unusual orbit of the transiting planet. In HD 15082, the stellar line profiles also show evidence of non-radial pulsations, clearly distinct from the planetary transit signal. This raises the intriguing possibility that tides raised by the close-in planet may excite or amplify the pulsations in such stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present wide-field imaging of the 2007 outburst of Comet 17P/Holmes obtained serendipitously by SuperWASP-North on 17 nights over a 42-night period beginning on the night (2007 October 22-23) immediately prior to the outburst. Photometry of 17P's unresolved coma in SuperWASP data taken on the first night of the outburst is consistent with exponential brightening, suggesting that the rapid increase in the scattering cross-section of the coma could be largely due to the progressive fragmentation of ejected material produced on a very short time-scale at the time of the initial outburst, with fragmentation time-scales decreasing from tfrag ~ 2 × 103 to ~1 × 103 s over our observing period. Analysis of the expansion of 17P's coma reveals a velocity gradient suggesting that the outer coma was dominated by material ejected in an instantaneous, explosive manner. We find an expansion velocity at the edge of the dust coma of vexp = 0.55 +/- 0.02 kms -1 and a likely outburst date of t0 = 2007 October 23.3 +/- 0.3, consistent with our finding that the comet remained below SuperWASP's detection limit of mV ~ 15mag until at least 2007 October 23.3. Modelling of 17P's gas coma indicates that its outer edge, which was observed to extend past the outer dust coma, is best explained with a single pulse of gas production, consistent with our conclusions concerning the production of the outer dust coma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the early UV and optical light curve of Type IIP supernova (SN) 2010aq at z = 0.0862, and compare it to analytical models for thermal emission following SN shock breakout in a red supergiant star. SN 2010aq was discovered in joint monitoring between the Galaxy Evolution Explorer (GALEX) Time Domain Survey (TDS) in the NUV and the Pan-STARRS1 Medium Deep Survey (PS1 MDS) in the g, r, i, and z bands. The GALEX and Pan-STARRS1 observations detect the SN less than 1 day after the shock breakout, measure a diluted blackbody temperature of 31,000 +/- 6000 K 1 day later, and follow the rise in the UV/optical light curve over the next 2 days caused by the expansion and cooling of the SN ejecta. The high signal-to-noise ratio of the simultaneous UV and optical photometry allows us to fit for a progenitor star radius of 700 +/- 200R(circle dot), the size of a red supergiant star. An excess in UV emission two weeks after shock breakout compared with SNe well fitted by model atmosphere-code synthetic spectra with solar metallicity is best explained by suppressed line blanketing due to a lower metallicity progenitor star in SN 2010aq. Continued monitoring of PS1 MDS fields by the GALEX TDS will increase the sample of early UV detections of Type II SNe by an order of magnitude and probe the diversity of SN progenitor star properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-mag early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 ± 0.03 MJup and radius of 1.32 ± 0.08 RJup. The host star, WASP-26, has a mass of 1.12 ± 0.03 M? and a radius of 1.34 ± 0.06 R? and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 ± 15 pc and an age of 6 ± 2 Gy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We announce the discovery of a new low-mass, pre-main sequence eclipsing binary, MML 53. Previous observations of MML 53 found it to be a pre-main sequence spectroscopic multiple associated with the 15-22 Myr Upper Centaurus-Lupus cluster. We identify the object as an eclipsing binary for the first time through the analysis of multiple seasons of time series photometry from the SuperWASP transiting planet survey. Re-analysis of a single archive spectrum shows MML 53 to be a spatially unresolved triple system of young stars which all exhibit significant lithium absorption. Two of the components comprise an eclipsing binary with period, P = 2.097891(6) ± 0.000005 and mass ratio, q ~ 0.8. Here, we present the analysis of the discovery data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SuWt 2 is a planetary nebula (PN) consisting of a bright ionized thin ring seen nearly edge-on, with much fainter bipolar lobes extending perpendicularly to the ring. It has a bright (12th magnitude) central star, too cool to ionize the PN, which we discovered in the early 1990s to be an eclipsing binary. Although it was anticipated that there would also be an optically faint, hot, ionizing star in the system, a spectrum from the International Ultraviolet Explorer (IUE) did not reveal a UV source. We present extensive ground-based photometry and spectroscopy of the central binary collected over the ensuing two decades, resulting in the determination that the orbital period of the eclipsing pair is 4.9 days, and that it consists of two nearly identical A1 V stars, each of mass ~2.7 M sun. The physical parameters of the A stars, combined with evolutionary tracks, show that both are in the short-lived "blue-hook" evolutionary phase that occurs between the main sequence and the Hertzsprung gap, and that the age of the system is about 520 Myr. One puzzle is that the stars' rotational velocities are different from each other, and considerably slower than synchronous with the orbital period. It is possible that the center-of-mass velocity of the eclipsing pair is varying with time, suggesting that there is an unseen third orbiting body in the system. We propose a scenario in which the system began as a hierarchical triple, consisting of a ~2.9 M sun star orbiting the close pair of A stars. Upon reaching the asymptotic giant branch stage, the primary engulfed the pair into a common envelope, leading to a rapid contraction of the orbit and catastrophic ejection of the envelope into the orbital plane. In this picture, the exposed core of the initial primary is now a white dwarf of ~0.7 M sun, orbiting the eclipsing pair, which has already cooled below the detectability possible by IUE at our derived distance of 2.3 kpc and a reddening of E(B - V) = 0.40. The SuWt 2 system may be destined to perish as a Type Ia supernova.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Several competing scenarios for planetary-system formation and evolution seek to explain how hot Jupiters came to be so close to their parent stars. Most planetary parameters evolve with time, making it hard to distinguish between models. The obliquity of an orbit with respect to the stellar rotation axis is thought to be more stable than other parameters such as eccentricity. Most planets, to date, appear aligned with the stellar rotation axis; the few misaligned planets so far detected are massive (> 2 MJ). Aims: Our goal is to measure the degree of alignment between planetary orbits and stellar spin axes, to search for potential correlations with eccentricity or other planetary parameters and to measure long term radial velocity variability indicating the presence of other bodies in the system. Methods: For transiting planets, the Rossiter-McLaughlin effect allows the measurement of the sky-projected angle ß between the stellar rotation axis and a planet's orbital axis. Using the HARPS spectrograph, we observed the Rossiter-McLaughlin effect for six transiting hot Jupiters found by the WASP consortium. We combine these with long term radial velocity measurements obtained with CORALIE. We used a combined analysis of photometry and radial velocities, fitting model parameters with the Markov Chain Monte Carlo method. After obtaining ß we attempt to statistically determine the distribution of the real spin-orbit angle ?. Results: We found that three of our targets have ß above 90°: WASP-2b: ß = 153°+11-15, WASP-15b: ß = 139.6°+5.2-4.3 and WASP-17b: ß = 148.5°+5.1-4.2; the other three (WASP-4b, WASP-5b and WASP-18b) have angles compatible with 0°. We find no dependence between the misaligned angle and planet mass nor with any other planetary parameter. All six orbits are close to circular, with only one firm detection of eccentricity e = 0.00848+0.00085-0.00095 in WASP-18b. No long-term radial acceleration was detected for any of the targets. Combining all previous 20 measurements of ß and our six and transforming them into a distribution of ? we find that between about 45 and 85% of hot Jupiters have ? > 30°. Conclusions: Most hot Jupiters are misaligned, with a large variety of spin-orbit angles. We find observations and predictions using the Kozai mechanism match well. If these observational facts are confirmed in the future, we may then conclude that most hot Jupiters are formed from a dynamical and tidal origin without the necessity to use type I or II migration. At present, standard disc migration cannot explain the observations without invoking at least another additional process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the discovery of a transiting planet orbiting the star TYC 6446-326-1. The star, WASP-22, is a moderately bright (V = 12.0) solar-type star (Teff = 6000 ± 100 K, [Fe/H] = -0.05 ± 0.08). The light curve of the star obtained with the WASP-South instrument shows periodic transit-like features with a depth of about 1% and a duration of 0.14 days. The presence of a transit-like feature in the light curve is confirmed using z-band photometry obtained with Faulkes Telescope South. High-resolution spectroscopy obtained with the CORALIE and HARPS spectrographs confirms the presence of a planetary mass companion with an orbital period of 3.533 days in a near-circular orbit. From a combined analysis of the spectroscopic and photometric data assuming that the star is a typical main-sequence star we estimate that the planet has a mass M p = 0.56 ± 0.02M Jup and a radius R p = 1.12 ± 0.04R Jup. In addition, there is a linear trend of 40 m s-1 yr-1 in the radial velocities measured over 16 months, from which we infer the presence of a third body with a long-period orbit in this system. The companion may be a low mass M-dwarf, a white dwarf, or a second planet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: We report the discovery of WASP-38b, a long period transiting planet in an eccentric 6.871815 day orbit. The transit epoch is 2 455 335.92050 ± 0.00074 (HJD) and the transit duration is 4.663 h. Methods: WASP-38b's discovery was enabled due to an upgrade to the SuperWASP-North cameras. We performed a spectral analysis of the host star HD 146389/BD+10 2980 that yielded Teff = 6150 ± 80 K, log g = 4.3 ± 0.1, v sin i = 8.6 ± 0.4 km s-1, M_* = 1.16 ± 0.04 M? and R_* = 1.33 ± 0.03 R?, consistent with a dwarf of spectral type F8. Assuming a main-sequence mass-radius relation for the star, we fitted simultaneously the radial velocity variations and the transit light curves to estimate the orbital and planetary parameters. Results: The planet has a mass of 2.69 ± 0.06 MJup and a radius of 1.09 ± 0.03 RJup giving a density, ?p = 2.1 ± 0.1 ?J. The high precision of the eccentricity e = 0.0314 ± 0.0044 is due to the relative transit timing from the light curves and the RV shape. The planet equilibrium temperature is estimated at 1292 ± 33 K. WASP-38b is the longest period planet found by SuperWASP-North and with a bright host star (V = 9.4 mag), is a good candidate for followup atmospheric studies. Photometry and RV data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/525/A54