53 resultados para PARAMETER-PRESERVING ANTIFERROMAGNET


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Healing algorithms play a crucial part in distributed peer-to-peer networks where failures occur continuously and frequently. Whereas there are approaches for robustness that rely largely on built-in redundancy, we adopt a responsive approach that is more akin to that of biological networks e.g. the brain. The general goal of self-healing distributed graphs is to maintain certain network properties while recovering from failure quickly and making bounded alterations locally. Several self-healing algorithms have been suggested in the recent literature [IPDPS'08, PODC'08, PODC'09, PODC'11]; they heal various network properties while fulfilling competing requirements such as having low degree increase while maintaining connectivity, expansion and low stretch of the network. In this work, we augment the previous algorithms by adding the notion of edge-preserving self-healing which requires the healing algorithm to not delete any edges originally present or adversarialy inserted. This reflects the cost of adding additional edges but more importantly it immediately follows that edge preservation helps maintain any subgraph induced property that is monotonic, in particular important properties such as graph and subgraph densities. Density is an important network property and in certain distributed networks, maintaining it preserves high connectivity among certain subgraphs and backbones. We introduce a general model of self-healing, and introduce xheal+, an edge-preserving version of xheal[PODC'11]. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tolerance allocation is an important step in the design process. It is necessary to produce high quality components cost-effectively. However, the process of allocating tolerances can be time consuming and difficult, especially for complex models. This work demonstrates a novel CAD based approach, where the sensitivities of product dimensions to changes in the values of the feature parameters in the CAD model are computed. These are used to automatically establish the assembly response function for the product. This information has been used to automatically allocate tolerances to individual part dimensions to achieve specified tolerances on the assembly dimensions, even for tolerance allocation in more than one direction simultaneously. It is also shown how pre-existing constraints on some of the part dimensions can be represented and how situations can be identified where the required tolerance allocation is not achievable. A methodology is also presented that uses the same information to model a component with different amounts of dimensional variation to simulate the effects of tolerance stack-up. © 2014 Springer-Verlag France.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Arteriovenous fistulae (AVFs) are the preferred option for vascular access, as they are associated with lower mortality in hemodialysis patients than in those patients with arteriovenous grafts (AVGs) or central venous catheters (CVCs). We sought to assess whether vascular access outcomes for surgical trainees are comparable to fully trained surgeons.

METHODS: A prospectively collected database of patients was created and information recorded regarding patient demographics, past medical history, preoperative investigations, grade of operating surgeon, type of AVF formed, primary AVF function, cumulative AVF survival and functional patency.

RESULTS: One hundred and sixty-two patients were identified as having had vascular access procedures during the 6 month study period and 143 were included in the final analysis. Secondary AVF patency was established in 123 (86%) of these AVFs and 89 (62.2%) were used for dialysis. There was no significant difference in survival of AVFs according to training status of surgeon (log rank x2 0.506 p=0.477) or type of AVF (log rank x2 0.341 p=0.559). Patency rates of successful AVFs at 1 and 2 years were 60.9% and 47.9%, respectively.

CONCLUSION: We have demonstrated in this prospective study that there are no significant differences in outcomes of primary AVFs formed by fully trained surgeons versus surgical trainees. Creation of a primary AVF represents an excellent training platform for intermediate stage surgeons across general and vascular surgical specialties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemically ordered B2 FeRh exhibits a remarkable antiferromagnetic-ferromagnetic phase transition that is first order. It thus shows phase coexistence, usually by proceeding though nucleation at random defect sites followed by propagation of phase boundary domain walls. The transition occurs at a temperature that can be varied by doping other metals onto the Rh site. We have taken advantage of this to yield control over the transition process by preparing an epilayer with oppositely directed doping gradients of Pd and Ir throughout its height, yielding a gradual transition that occurs between 350 K and 500 K. As the sample is heated, a horizontal antiferromagnetic-ferromagnetic phase boundary domain wall moves gradually up through the layer, its position controlled by the temperature. This mobile magnetic domain wall affects the magnetisation and resistivity of the layer in a way that can be controlled, and hence exploited, for novel device applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach to the modelling of passive intermodulation (PIM) generation in passive components with distributed weak nonlinearities is outlined. Based upon the formalism of X-parameters, it provides a unified framework for co-design of antenna beamforming networks, filters, combiners, phase shifters and other passive and active devices containing nonlinearities at RF front-end. The effects of discontinuities and complex circuit layouts can be efficiently evaluated with the aid of the equivalent networks of the canonical nonlinear elements. The main concepts are illustrated by examples of numerical simulations of PIM generation in the transmission lines and comparison with the measurement results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the estimation of parameters of a Bayesian network from incomplete data. The task is usually tackled by running the Expectation-Maximization (EM) algorithm several times in order to obtain a high log-likelihood estimate. We argue that choosing the maximum log-likelihood estimate (as well as the maximum penalized log-likelihood and the maximum a posteriori estimate) has severe drawbacks, being affected both by overfitting and model uncertainty. Two ideas are discussed to overcome these issues: a maximum entropy approach and a Bayesian model averaging approach. Both ideas can be easily applied on top of EM, while the entropy idea can be also implemented in a more sophisticated way, through a dedicated non-linear solver. A vast set of experiments shows that these ideas produce significantly better estimates and inferences than the traditional and widely used maximum (penalized) log-likelihood and maximum a posteriori estimates. In particular, if EM is adopted as optimization engine, the model averaging approach is the best performing one; its performance is matched by the entropy approach when implemented using the non-linear solver. The results suggest that the applicability of these ideas is immediate (they are easy to implement and to integrate in currently available inference engines) and that they constitute a better way to learn Bayesian network parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field. This would enable {\it de facto} Hamiltonian diagnosis via a highly controllable quantum probe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern control methods like optimal control and model predictive control (MPC) provide a framework for simultaneous regulation of the tracking performance and limiting the control energy, thus have been widely deployed in industrial applications. Yet, due to its simplicity and robustness, the conventional P (Proportional) and PI (Proportional–Integral) control are still the most common methods used in many engineering systems, such as electric power systems, automotive, and Heating, Ventilation and Air Conditioning (HVAC) for buildings, where energy efficiency and energy saving are the critical issues to be addressed. Yet, little has been done so far to explore the effect of its parameter tuning on both the system performance and control energy consumption, and how these two objectives are correlated within the P and PI control framework. In this paper, the P and PI controllers are designed with a simultaneous consideration of these two aspects. Two case studies are investigated in detail, including the control of Voltage Source Converters (VSCs) for transmitting offshore wind power to onshore AC grid through High Voltage DC links, and the control of HVAC systems. Results reveal that there exists a better trade-off between the tracking performance and the control energy through a proper choice of the P and PI controller parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical models are useful tools for simulation, evaluation, optimal operation and control of solar cells and proton exchange membrane fuel cells (PEMFCs). To identify the model parameters of these two type of cells efficiently, a biogeography-based optimization algorithm with mutation strategies (BBO-M) is proposed. The BBO-M uses the structure of biogeography-based optimization algorithm (BBO), and both the mutation motivated from the differential evolution (DE) algorithm and the chaos theory are incorporated into the BBO structure for improving the global searching capability of the algorithm. Numerical experiments have been conducted on ten benchmark functions with 50 dimensions, and the results show that BBO-M can produce solutions of high quality and has fast convergence rate. Then, the proposed BBO-M is applied to the model parameter estimation of the two type of cells. The experimental results clearly demonstrate the power of the proposed BBO-M in estimating model parameters of both solar and fuel cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: This article uses conventional and newly extended solubility parameter (δ) methods to identify polymeric materials capable of forming amorphous dispersions with itraconazole (itz). Methods: Combinations of itz and Soluplus, Eudragit E PO (EPO), Kollidon 17PF (17PF) or Kollidon VA64 (VA64) were prepared as amorphous solid dispersions using quench cooling and hot melt extrusion. Storage stability was evaluated under a range of conditions using differential scanning calorimetry and powder X-ray diffraction. Key findings: The rank order of itz miscibility with polymers using both conventional and novel δ-based approaches was 17PF > VA64 > Soluplus > EPO, and the application of the Flory–Huggins lattice model to itz–excipient binary systems corroborated the findings. The solid-state characterisation analyses of the formulations manufactured by melt extrusion correlated well with pre-formulation screening. Long-term storage studies showed that the physical stability of 17PF/vitamin E TPGS–itz was poor compared with Soluplus and VA64 formulations, and for EPO/itz systems variation in stability may be observed depending on the preparation method. Conclusion: Results have demonstrated that although δ-based screening may be useful in predicting the initial state of amorphous solid dispersions, assessment of the physical behaviour of the formulations at relevant temperatures may be more appropriate for the successful development of commercially acceptable amorphous drug products.