50 resultados para Orthorhombic crystal structures


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ammonium chloride/mercuric chloride mixtures (molar ratio 2: 1) react at 350degreesC with Monel (Cu68Ni32) to yield (NH4)NiCl3 and mercury and copper amalgam, respectively. With larger amounts of (NH4)Cl in the reaction mixture, dark green (NH4)(2)(NH3)(x)[Ni(NH3)(2)Cl-4] (x approximate to 0.77) (1) is also formed as a main product. Light blue crystals of the mixed-valent copper(I,II) chloride (NH4)(5)Cl-5[CuCl2][CuCl4] (2) were obtained as a minor byproduct from a 4:1 reaction mixture. The crystal structures were determined from single crystal X-ray data; (1): tetragonal, I4/mmm, a = 770.9(1), e = 794.2(2) pm, 190 reflections, R-1 = 0.0263; (2): tetragonal, I4/mcm, a = 874.8(1), c = 2329.2(3) pm, 451 reflections, R-1 = 0.0736. In (1) Ni2+ resides in trans-[Ni(NH3)(2)Cl-4](2-) octahedra, and in (2) copper(l) is linearly two-coordinated in ECUC121- and copper(II) resides in a flattened tetrahedron [CuCl4](2-) with a tetrahedricity of 89%. (C) 2001 Elsevier Science.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of nitrile-functionalized ionic liquids were found to exhibit temperature-dependent miscibility (thermomorphism) with the lower alcohols. Their coordinating abilities toward cobalt(II) ions were investigated through the dissolution process of cobalt(II) bis(trifluoromethylsulfonyl)imide and were found to depend on the donor abilities of the nitrile group. The crystal structures of the cobalt(II) solvates [Co(C1C1CNPyr)2(Tf2N)4] and [Co(C1C2CNPyr)6][Tf2N]8, which were isolated from ionic-liquid solutions, gave an insight into the coordination chemistry of functionalized ionic liquids. Smooth layers of cobalt metal could be obtained by electrodeposition of the cobalt-containing ionic liquids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The combination of different boron cluster anions and some of the cations typically found in the composition of ionic liquids has been possible by straightforward metathetic reactions, producing new low melting point salts; the imidazolium cations have been systematically studied, [C(n)mim](+) (when [C(n)mim](+) = 1-alkyl-3-methylimidazolium; n = 2, 4, 6, 8, 10, 12, 14, 16, or 18). Melting points increase in the anionic order [Co(C2B9H11)(2)](-) =-34 degrees C). The salts [C(n)mim](2)[X] ([X](2-) = [B10Cl10](2-) or [B12Cl12](2-), n = 16 or 18) show liquid crystal phases between the solid and liquid states. Tetraalkylphosphonium salts of [B10Cl10](2-) have also been prepared. Physical properties, such as thermal stability, density, or viscosity, have been measured for some selected samples. The presence of the perhalogenated dianion [B12Cl12](2-) in the composition of the imidazolium salts renders highly thermally stable compounds. For example, [C(2)mim](2)[B12Cl12] starts to decompose above 480 degrees C in a dynamic TGA analysis under a dinitrogen atmosphere. Crystal structures of [C(2)mim][Co(C2B9H11)(2)] and [C(2)mim](2)[B12Cl12] have been determined. H-1 NMR spectra of selected imidazolium-boron cluster anion salts have been recorded from solutions as a function of the concentration, showing trends related to the cation-anion interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Guanine-rich DNA repeat sequences located at the terminal ends of chromosomal DNA can fold in a sequence-dependent manner into G-quadruplex structures, notably the terminal 150–200 nucleotides at the 3' end, which occur as a single-stranded DNA overhang. The crystal structures of quadruplexes with two and four human telomeric repeats show an all-parallel-stranded topology that is readily capable of forming extended stacks of such quadruplex structures, with external TTA loops positioned to potentially interact with other macromolecules. This study reports on possible arrangements for these quadruplex dimers and tetramers, which can be formed from 8 or 16 telomeric DNA repeats, and on a methodology for modeling their interactions with small molecules. A series of computational methods including molecular dynamics, free energy calculations, and principal components analysis have been used to characterize the properties of these higher-order G-quadruplex dimers and tetramers with parallel-stranded topology. The results confirm the stability of the central G-tetrads, the individual quadruplexes, and the resulting multimers. Principal components analysis has been carried out to highlight the dominant motions in these G-quadruplex dimer and multimer structures. The TTA loop is the most flexible part of the model and the overall multimer quadruplex becoming more stable with the addition of further G-tetrads. The addition of a ligand to the model confirms the hypothesis that flat planar chromophores stabilize G-quadruplex structures by making them less flexible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two series of 1-alkylpyridinium and N-alkyl-N-methylpiperidinium ionic liquids fiinctionalized with a nitrile group at the end of the alkyl chain have been synthesized. Structural modifications include a change of the alkyl spacer length between the nitrile group and the heterocycle of the cationic core, as well as adding methyl or ethyl substituents on different positions of the pyridinium ring. The anions are the bromide and the bis(trifluoromethylsulfonyl)imide ion. All the bis(trifluoromethylsulfonyl)imide salts as well as the bromide salts with a long alkyl spacer were obtained as viscous liquids at room temperature, but some turned out to be supercooled liquids. In addition, pyrrolidinium and piperidinium ionic liquids with two nitrile functions attached to the heterocyclic core have been prepared. The crystal structures of seven pyridinium bis(trifluoromethylsulfonyl)imide salts are reported. Quantum chemical calculations have been performed on model cations and ion pairs with the bis(trifluoromethylsulfonyl)imide anion. A continuum model has been used to take solvation effects into account. These calculations show that the natural partial charge on the nitrogen atom of the nitrile group becomes more negative when the length of the alkyl spacer between the nitrile functional group and the heterocyclic core of the cation is increased. Methyl or methoxy substituents on the pyridinium ring slightly increase the negative charge on the nitrile nitrogen atom due to their electron-donating abilities. The position of the substituent (ortho, meta, or para) has only a very minor effect on the charge of the nitrogen atom. The N-15 NMR spectra of the bis(trifluoromethylsulfonyl)imide ionic liquids were recorded with the nitrogen-15 nucleus at its natural abundance. The chemical shift of the N-15 nucleus of the nitrile nitrogen atom could be correlated with the calculated negative partial charge on the nitrogen atom.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pulsed laser deposition (PLD) from a hot pressed manganese doped ZnS target using a KrF laser, has produced a high rate deposition method for growing luminescent thin films. Good stoichiometric quality and typical luminescent crystal structures have been observed with a predominant hexagonal phase and little evidence of the cubic phase. The luminescent characteristics were determined by cathodoluminescence and photoluminescence excitation and stable electroluminescence was observed under pulsed dc conditions with a minimum brightness of 150 cd/m2. PLD film characteristics are compared with those observed in radio-frequency sputtered samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The human telomeric DNA sequence with four repeats can fold into a parallel-stranded propeller-type topology. NMR structures solved under molecular crowding experiments correlate with the crystal structures found with crystal-packing interactions that are effectively equivalent to molecular crowding. This topology has been used for rationalization of ligand design and occurs experimentally in a number of complexes with a diversity of ligands, at least in the crystalline state. While G-quartet stems have been well characterised, the interactions of the TTA loop with the G-quartets are much less defined. To better understand the conformational variability and structural dynamics of the propeller-type topology, we performed molecular dynamics simulations in explicit solvent up to 1.5 µs. The analysis provides a detailed atomistic account of the dynamic nature of the TTA loops highlighting their interactions with the G-quartets including formation of an A:A base pair, triad, pentad and hexad. The results present a threshold in quadruplex simulations, with regards to understanding the flexible nature of the sugar-phosphate backbone in formation of unusual architecture within the topology. Furthermore, this study stresses the importance of simulation time in sampling conformational space for this topology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both ice and silica crystallize into solid-state structures composed of tetrahedral building units that are joined together to form an infinite four-connected net. Mathematical considerations suggest that there is a vast number of such nets and thus potential crystal structures. It is therefore perhaps surprising to discover that, despite the differences in the nature of interatomic interactions in these materials, a fair number of commonly observed ice and silica phases are based on common nets. Here we use computer simulation to investigate the origin of this symmetry between the structures formed for ice and silica and to attempt to understand why it is not complete. We start from a comparison of the dense phases and then move to the relationship between the different open (zeolitic and clathratic) structures formed for both materials. We show that there is a remarkably strong correlation between the energetics of isomorphic silica and water ice structures and that this correlation arises because of the strong link between the total energy of a material and its local geometric features. Finally, we discuss a number of as yet unsynthesized low-energy structures which include a phase of ice based on quartz, a silica based on the structure of ice VI, and an ice clathrate that is isomorphic to the silicate structure nonasil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Selective polypharmacology, where a drug acts on multiple rather than single molecular targets involved in a disease, emerges to develop a structure-based system biology approach to design drugs selectively targeting a disease-active protein network. We focus on the bioaminergic receptors that belong to the group of integral membrane signalling proteins coupled to the G protein and represent targets for therapeutic agents against schizophrenia and depression. Among them, it has been shown that the serotonin (5-HT2A and 5-HT6), dopamine (D2 and D3) receptors induce a cognition-enhancing effect (group 1), while the histamine (H1) and serotonin (5-HT2C) receptors lead to metabolic side effects and the 5-HT2B serotonin receptor causes pulmonary hypertension (group 2). Thus, the problem arises to develop an approach that allows identifying drugs targeting only the disease-active receptors, i.e. group 1. The recent release of several crystal structures of the bioaminergic receptors, involving the D3 and H1 receptors provides the possibility to model the structures of all receptors and initiate a study of the structural and dynamic context of selective polypharmacology. In this work, we use molecular dynamics simulations to generate a conformational space of the receptors and subsequently characterize its binding properties applying molecular probe mapping. All-against-all comparison of the generated probe maps of the selected diverse conformations of all receptors with the Tanimoto similarity coefficient (Tc) enable to separate the receptors of group 1 from group 2. The pharmacophore built based on the Tc-selected receptor conformations, using the multiple probe maps discovers structural features that can be used to design molecules selective towards the receptors of group 1. The importance of several predicted residues to ligand selectivity is supported by the available mutagenesis and ligand structure-activity relationships studies. In addition, the Tc-selected conformations of the receptors for group 1 show good performance in isolation of known ligands from a random decoy. Our computational structure-based protocol to tackle selective polypharmacology of antipsychotic drugs could be applied for other diseases involving multiple drug targets, such as oncologic and infectious disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The incorporation of active pharmaceutical ingredients (APIs) into multicomponent solid forms (such as salts and co-crystals) or liquid forms (such as ionic liquids (ILs) or deep eutectic mixtures) is important in optimizing the efficacy and delivery of APIs. However, there is a current debate regarding the classification of these multicomponent systems based on their ionicity which could interfere with their consideration in important applications. Multicomponent systems of intermediate ionicity can show a combination of properties, leading to behavior that is neither strictly typical of either purely ionic or purely neutral compounds, nor easily described as intermediate between the two. In this perspective, we attempt to illustrate the problems in classifying multicomponent APIs based on one of two categories by discussing selected literature regarding solid and liquid multicomponent APIs and presenting the crystal structures of some relevant systems as case studies. It is clear that a focus on restrictive nomenclature carries with it the risk that a thorough examination of the physicochemical properties of the compounds will be overlooked.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Herein we report the intra- and inter-molecular assembly of a {V5O9} subunit. This mixed-valent structural motif can be stabilised as [V5O9(L1–3)4]5−/9− (1–3) by a range of organoarsonate ligands (L1–L3) whose secondary functionalities influence its packing arrangement within the crystal structures. Variation of the reaction conditions results in the dodecanuclear cage structure [V12O14(OH)4(L1)10]4− (4) where two modified convex building units are linked via two dimeric {O4VIV(OH)2VIVO4} moieties. Bi-functional phosphonate ligands, L4–L6 allow the intramolecular connectivity of the {V5O9} subunit to give hybrid capsules [V10O18(L4–6)4]10− (5–7). The dimensions of the electrophilic cavities of the capsular entities are determined by the incorporated ligand type. Mass spectrometry experiments confirm the stability of the complexes in solution. We investigate and model the temperature-dependent magnetic properties of representative complexes 1, 4, 6 and 7 and provide preliminary cell-viability studies of three different cancer cell lines with respect to Na8H2[6]·36H2O and Na8H2[7]·2DMF·29H2O.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

N,O-ligated Pd(II) complexes show considerable promise for the oxidation of challenging secondary aliphatic alcohols. The crystal structures of the highly active complexes containing the 8-hydroxyquinoline-2-carboxylic acid (HCA) and 8-hydroxyquinoline-2-sulfonic acid (HSA) ligands have been obtained. The (HSA)Pd(OAc)2 system can effectively oxidise a range of secondary alcohols, including unactivated alcohols, within 4–6 h using loadings of 0.5 mol%, while lower loadings (0.2 mol%) can be employed with extended reaction times. The influence of reaction conditions on catalyst degradation was also examined in these studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evolution can increase the complexity of matter by self-organization into helical architectures, the best example being the DNA double helix. One common aspect, apparently shared by most of these architectures, is the presence of covalent bonds within the helix backbone. Here, we report the unprecedented crystal structures of a metal complex that self-organizes into a continuous double helical structure, assembled by non-covalent building blocks. Built up solely by weak stacking interactions, this alternating tread stairs-like double helical assembly mimics the DNA double helix structure. Starting from a racemic mixture in aqueous solution, the ruthenium(II) polypyridyl complex forms two polymorphic structures of a left-handed double helical assembly of only the Λ-enantiomer. The stacking of the helices is different in both polymorphs: a crossed woodpile structure versus a parallel columnar stacking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metallo-azomethine ylides, generated from imines by the action of amine bases in combination with LiBr or AgOAc, undergo cycloaddition with both 1R, 2S, 5R- and 1S, 2R, 5S-menthyl acrylate at room temperature to give homochiral pyrrolidines in excellent yield. The stronger the base the faster the cycloaddition and the greater the yield with: 2-t-butyl-1,1,3,3-tetramethylguanidine > DBU > NEt(3) X-Ray crystal structures of representative cycloadducts establish that the absolute configuration of the newly established pyrrolidine stereocentres is independent of the metal salt and the size of the pyrrolidineC(2)-substituent for a series of aryl and aliphatic imines.