37 resultados para Olav I Trygveson, King of Norway, 968-1000.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We outline our techniques to characterise photospheric granulation as an astrophysical noise source. A four component parameterisation of granulation is developed that can be used to reconstruct stellar line asymmetries and radial velocity shifts due to photospheric convective motions. The four components are made up of absorption line profiles calculated for granules, magnetic intergranular lanes, non-magnetic intergranular lanes, and magnetic bright points at disc centre. These components are constructed by averaging Fe I $6302 \mathrm{\AA}$ magnetically sensitive absorption line profiles output from detailed radiative transport calculations of the solar photosphere. Each of the four categories adopted are based on magnetic field and continuum intensity limits determined from examining three-dimensional magnetohydrodynamic simulations with an average magnetic flux of $200 \mathrm{G}$. Using these four component line profiles we accurately reconstruct granulation profiles, produced from modelling 12 x 12 Mm$^2$ areas on the solar surface, to within $\sim \pm$ 20 cm s$^{-1}$ on a $\sim$ 100 m s$^{-1}$ granulation signal. We have also successfully reconstructed granulation profiles from a $50 \mathrm{G}$ simulation using the parameterised line profiles from the $200 \mathrm{G}$ average magnetic field simulation. This test demonstrates applicability of the characterisation to a range of magnetic stellar activity levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of the next generation of civil and military transport aircraft will inevitably see an increased use of advanced carbon fibre composite material in the primary structure if performance targets are to be met. One concern in this development is the vulnerability of co-cured and co-bonded stiffened structures to through-thickness stresses at the skin-stiffener interfaces, particularly in stiffener runout regions. These regions are a consequence of the requirement to terminate stiffeners at cutouts, rib intersections, or other structural features which interrupt the stiffener load path.

This work presents the results of an experimental programme investigating the failure of thick-sectioned stiffener runout specimens loaded in uniaxial compression. For all tests, failure initiated at the edge of the runout and propagated across the skin-stiffener interface. It was found that the failure load of each specimen was greatly influenced by intentional changes in the geometric features of these specimens. High frictional forces at the edge of the runout were also deduced from a fractographic analysis, indicating a predominantly Mode II initial failure mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation of NADH in the mitochondrial matrix of aerobic cells is catalysed by mitochondrial complex I. The regulation of this mitochondrial enzyme is not completely understood. An interesting characteristic of complex I from some organisms is the ability to adopt two distinct states: the so-called catalytically active (A) and the de-active, dormant state (D). The A-form in situ can undergo de-activation when the activity of the respiratory chain is limited (i.e. in the absence of oxygen). The mechanisms and driving force behind the A/D transition of the enzyme are currently unknown, but several subunits are most likely involved in the conformational rearrangements: the accessory subunit 39 kDa (NDUFA9) and the mitochondrially encoded subunits, ND3 and ND1. These three subunits are located in the region of the quinone binding site. The A/D transition could represent an intrinsic mechanism which provides a fast response of the mitochondrial respiratory chain to oxygen deprivation. The physiological role of the accumulation of the D-form in anoxia is most probably to protect mitochondria from ROS generation due to the rapid burst of respiration following reoxygenation. The de-activation rate varies in different tissues and can be modulated by the temperature, the presence of free fatty acids and divalent cations, the NAD/NADH ratio in the matrix, the presence of nitric oxide and oxygen availability. Cysteine-39 of the ND3 subunit, exposed in the D-form, is susceptible to covalent modification by nitrosothiols, ROS and RNS. The D-form in situ could react with natural effectors in mitochondria or with pharmacological agents. Therefore the modulation of the re-activation rate of complex I could be a way to ameliorate the ischaemia/reperfusion damage. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the European Union, food is considered safe with regard to Listeria monocytogenes if its numbers do not exceed 100 cfu/g throughout the shelf-life of the food. Therefore, it is important to determine if a food supports growth of L. monocytogenes. Challenge tests are laboratory-based studies that measure the growth of L. monocytogenes on artificially contaminated food stored under foreseeable conditions of transportation, distribution and storage. The aim of this study was to elaborate and optimize a user-friendly protocol to perform challenge tests on food and to apply it to determine whether growth of L. monocytogenes is supported during the production and distribution of a potentially risky food i.e. mushrooms. A three-strain mixture of L. monocytogenes was inoculated onto three independent batches of whole mushrooms, sliced mushrooms, mushroom casing and mushroom substrate at a concentration of about 100 -1000 cfu/g. The batches were incubated at potential abuse temperatures, as a worst case scenario, and at intervals during storage L. monocytogenes numbers, % moisture and pH were determined. The results showed that the sliced and whole mushrooms supported growth of L. monocytogenes while mushroom casing allowed survival but did not support growth. Mushroom substrate showed a rich background microflora able of growing in Listeria selective media which hindered enumeration of L. monocytogenes. Combase predictions were not always accurate, indicating that challenge tests are a necessary part of growth determination of L. monocytogenes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecularly adsorbed CO on Pd{110} has been shown (R. Raval et al., Chem. Phys. Lett. 167 (1990) 391, ref. [1]) to induce a substantial reconstruction of the surface in the coverage range 0.3 <theta less-than-or-equal-to 0.75. Throughout this coverage range, the adsorbate-covered reconstructed surface exhibits a (4 x 2) LEED pattern. However, the exact nature of the reconstruction remains uncertain. We have conducted a LEED I(E) "fingerprinting" analysis of the CO/Pd{110}-(4 x 2) structure in order to establish the type of reconstruction induced in the metal surface. This study shows that the LEED I(E) profiles of the integral order and appropriate half-order beams of the CO/Pd{110}-(4 x 2) pattern closely resemble the I(E) profiles theoretically calculated for a Pd{110}-(1 x 2) missing-row structure. Additionally, there is a strong resemblance to the experimental LEED I(E) profiles for the Cs/Pd{110}-(1 x 2) structure which has also been shown to exhibit the missing-row structure. On the basis of this evidence we conclude that the CO/Pd{110}-(4 x 2) LEED pattern arises from a missing-row reconstruction of the Pd{110} surface which gives rise to a strong underlying (1 x 2) pattern plus a poorly ordered CO overlayer which produces weak, diffuse fourth-order spots in the LEED pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The ovarian surface epithelium responds to cytokines and hormonal cues to initiate proliferation and migration following ovulation. Although insulin and IGF are potent proliferative factors for the ovarian surface epithelium and IGF is required for follicle development, increased insulin and IGF activity are correlated with at least two gynecologic conditions: polycystic ovary syndrome and epithelial ovarian cancer. Although insulin and IGF are often components of in vitro culture media, little is known about the effects that these growth factors may have on the ovarian surface epithelium morphology or how signaling in the ovarian surface may affect follicular health and development.

METHODS: Ovaries from CD1 mice were cultured in alginate hydrogels in the presence or absence of 5 μg/ml insulin or IGF-I, as well as small molecule inhibitors of IR/IGF1R, PI 3-kinase signaling, or MAPK signaling. Tissues were analyzed by immunohistochemistry for expression of cytokeratin 8 to mark the ovarian surface epithelium, Müllerian inhibiting substance to mark secondary follicles, and BrdU incorporation to assess proliferation. Changes in gene expression in the ovarian surface epithelium in response to insulin or IGF-I were analyzed by transcription array. Extracellular matrix organization was evaluated by expression and localization of collagen IV.

RESULTS: Culture of ovarian organoids with insulin or IGF-I resulted in formation of hyperplastic OSE approximately 4-6 cell layers thick with a high rate of proliferation, as well as decreased MIS expression in secondary follicles. Inhibition of the MAPK pathway restored MIS expression reduced by insulin but only partially restored normal OSE growth and morphology. Inhibition of the PI 3-kinase pathway restored MIS expression reduced by IGF-I and restored OSE growth to a single cell layer. Insulin and IGF-I altered organization of collagen IV, which was restored by inhibition of PI 3-kinase signaling.

CONCLUSIONS: While insulin and IGF are often required for propagation of primary cells, these cytokines may act as potent mitogens to disrupt cell growth, resulting in formation of hyperplastic OSE and decreased follicular integrity as measured by MIS expression and collagen deposition. This may be due partly to altered collagen IV deposition and organization in the ovary in response to insulin and IGF signaling mediated by PI 3-kinase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: RAS is mutated (RASMT) in ~55% of mCRC, and phase III studies have shown that patients harbouring RAS mutations do not benefit from anti-EGFR MoAbs. In addition, ~50% of RAS Wild Type (RASWT) will not benefit from the addition of an EGFR MoAb to standard chemotherapy. Hence, novel treatment strategies are urgently needed for RASMT and > 50% of RASWT mCRC patients. c-MET is overexpressed in ~50-60%, amplified in ~2-3% and mutated in ~3-5% of mCRC. Recent preclinical studies have shown that c-MET is an important mediator of resistance to MEK inhibitors (i) in RASMT mCRC, and that combined MEKi/METi resulted in synergistic reduction in tumour growth in RASMT xenograft models (1). A number of recent studies have highlighted the role of c-MET in mediating primary/secondary resistance to anti-EGFR MoAbs in mCRC, suggesting that patient with RASWT tumours with aberrant c-MET (RASWT/c-MET+) may benefit from anti-c-MET targeted therapies (2). These preclinical data supported the further clinical evaluation of combined MEKi/METi treatment in RASMT and RASWT CRC patients with aberrant c-MET signalling (overexpression, amplification or mutation; RASWT/c-MET+). Methods: MErCuRIC1 is a phase I combination study of METi crizotinib with MEKi PD-0325901. The dose escalation phase, utilizing a rolling six design, recruits 12-24 patients with advanced solid tumours and aims to assess safety/toxicity of combination, recommended phase II (RPII) dose, pharmacokinetics (PK) and pharmacodynamics (PD) (pERK1/2 in PBMC and tumour; soluble c-MET). In the dose expansion phase an additional 30-42 RASMT and RASWT/c-MET mCRC patients with biopsiable disease will be treated at the RPII dose to further evaluate safety, PK, PD and treatment response. In the dose expansion phase additional biopsy and blood samples will be obtained to define mechanisms of response/resistance to crizotinib/PD-0325901 therapy. Enrolment into the dose escalation phase began in December 2014 with cohort 1 still ongoing. EudraCT registry number: 2014-000463-40. (1) Van Schaeybroeck S et al. Cell Reports 2014;7(6):1940-55; (2) Bardelli A et al. Cancer Discov 2013;3(6):658-73. Clinical trial information: 2014-000463-40.