106 resultados para OUTER GALACTIC DISK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We undertake an optical and ultraviolet spectroscopic analysis of a sample of 20 Galactic B0-B5 supergiants of luminosity classes Ia, Ib, Iab, and II. Fundamental stellar parameters are obtained from optical diagnostics and a critical comparison of the model predictions to observed UV spectral features is made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We have previously analysed the spectra of 135 early B-type stars in the Large Magellanic Cloud (LMC) and found several groups of stars that have chemical compositions that conflict with the theory of rotational mixing. Here we extend this study to Galactic and Small Magellanic Cloud (SMC) metallicities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Galactic Centre is the most active and heavily processed region of the Milky Way, so it can be used as a stringent test for the abundance of deuterium (a sensitive indicator of conditions in the first 1,000 seconds in the life of the Universe). As deuterium is destroyed in stellar interiors, chemical evolution models 1 predict that its Galactic Centre abundance relative to hydrogen is D/H = 5 x 10(-12), unless there is a continuous source of deuterium from relatively primordial (low-metallicity) gas. Here we report the detection of deuterium (in the molecule DCN) in a molecular cloud only 10 parsecs from the Galactic Centre. Our data, when combined with a model of molecular abundances, indicate that D/H = (1.7 +/- 0.3) x 10(-6), five orders of magnitude larger than the predictions of evolutionary models with no continuous source of deuterium. The most probable explanation is recent infall of relatively unprocessed metal-poor gas into the Galactic Centre (at the rate inferred by Wakker(2)). Our measured D/H is nine times less than the local interstellar value, and the lowest D/H observed in the Galaxy. We conclude that the observed Galactic Centre deuterium is cosmological, with an abundance reduced by stellar processing and mixing, and that there is no significant Galactic source of deuterium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow of energy through the solar atmosphere and the heating of the Sun's outer regions are still not understood. Here, we report the detection of oscillatory phenomena associated with a large bright-point group that is 430,000 square kilometers in area and located near the solar disk center. Wavelet analysis reveals full-width half-maximum oscillations with periodicities ranging from 126 to 700 seconds originating above the bright point and significance levels exceeding 99%. These oscillations, 2.6 kilometers per second in amplitude, are coupled with chromospheric line-of-sight Doppler velocities with an average blue shift of 23 kilometers per second. A lack of cospatial intensity oscillations and transversal displacements rules out the presence of magneto-acoustic wave modes. The oscillations are a signature of Alfvén waves produced by a torsional twist of ±22 degrees. A phase shift of 180 degrees across the diameter of the bright point suggests that these torsional Alfvén oscillations are induced globally throughout the entire brightening. The energy flux associated with this wave mode is sufficient to heat the solar corona.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution optical spectra of 57 Galactic B-type supergiant stars have been analysed to determine their rotational and macroturbulent velocities. In addition, their atmospheric parameters (effective temperature, surface gravity and microturbulent velocity) and surface nitrogen abundances have been estimated using a non-local thermodynamic equilibrium grid of model atmospheres. Comparisons of the projected rotational velocities have been made with the predictions of stellar evolutionary models and in general good agreement was found. However, for a small number of targets, their observed rotational velocities were significantly larger than predicted, although their nitrogen abundances were consistent with the rest of the sample. We conclude that binarity may have played a role in generating their large rotational velocities. No correlation was found between nitrogen abundances and the current projected rotational velocities. However, a correlation was found with the inferred projected rotational velocities of the main-sequence precursors of our supergiant sample. This correlation is again in agreement with the predictions of single star evolutionary models that incorporate rotational mixing. The origin of the macroturbulence and microturbulent velocity fields is discussed and our results support previous theoretical studies that link the former to subphotospheric convection and the latter to non-radial gravity mode oscillations. In addition, we have attempted to identify differential rotation in our most rapidly rotating targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a high-resolution combined physical and chemical model of a protoplanetary disk surrounding a typical T Tauri star. Our aims were to use our model to calculate the chemical structure of disks on small scales (submilliarcsecond in the inner disk for objects at the distance of Taurus, ~140 pc) to investigate the various chemical processes thought to be important in disks and to determine potential molecular tracers of each process. Our gas-phase network was extracted from the UMIST Database for Astrochemistry to which we added gas–grain interactions including freezeout and thermal and non-thermal desorption (cosmic-ray-induced desorption, photodesorption, and X-ray desorption), and a grain-surface network. We find that cosmic-ray-induced desorption has the least effect on our disk chemical structure while photodesorption has a significant effect, enhancing the abundances of most gas-phase molecules throughout the disk and affecting the abundances and distribution of HCN, CN, and CS, in particular. In the outer disk, we also see enhancements in the abundances of H2O and CO2. X-ray desorption is a potentially powerful mechanism in disks, acting to homogenize the fractional abundances of gas-phase species across the depth and increasing the column densities of most molecules, although there remain significant uncertainties in the rates adopted for this process. The addition of grain-surface chemistry enhances the fractional abundances of several small complex organic molecules including CH3OH, HCOOCH3, and CH3OCH3 to potentially observable values (i.e., a fractional abundance of greater than 10-11).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Diabetic patients who also have retinitis pigmentosa (RP) appear to have fewer and less severe retinal microvascular lesions. Diabetic retinopathy may be linked to increased inner retinal hypoxia, with the possibility that this is exacerbated by oxygen usage during the dark-adaptation response. Therefore, patients with RP with depleted rod photoreceptors may encounter proportionately less retinal hypoxia, and, when diabetes is also present, there may be fewer retinopathic lesions. This hypothesis was tested in rhodopsin knockout mice (Rho(-/-)) as an RP model in which the diabetic milieu is superimposed. The study was designed to investigate whether degeneration of the outer retina has any impact on hypoxia, to examine diabetes-related retinal gene expression responses, and to assess lesions of diabetic retinopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galactic bulge planetary nebulae show evidence of mixed chemistry with emission from both silicate dust and polycyclic aromatic hydrocarbons (PAHs). This mixed chemistry is unlikely to be related to carbon dredge-up, as third dredge-up is not expected to occur in the low-mass bulge stars. We show that the phenomenon is widespread and is seen in 30 nebulae out of 40 of our sample, selected on the basis of their infrared flux. Hubble Space Telescope (HST) images and Ultraviolet and Visual Echelle Spectrograph (UVES) spectra show that the mixed chemistry is not related to the presence of emission-line stars, as it is in the Galactic disc population. We also rule out interaction with the interstellar medium (ISM) as origin of the PAHs. Instead, a strong correlation is found with morphology and the presence of a dense torus. A chemical model is presented which shows that hydrocarbon chains can form within oxygen-rich gas through gas-phase chemical reactions. The model predicts two layers, one at A_V~ 1.5, where small hydrocarbons form from reactions with C+, and one at A_V~ 4, where larger chains (and by implication, PAHs) form from reactions with neutral, atomic carbon. These reactions take place in a mini-photon-dominated region (PDR). We conclude that the mixed-chemistry phenomenon occurring in the Galactic bulge planetary nebulae is best explained through hydrocarbon chemistry in an ultraviolet (UV)-irradiated, dense torus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing, and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared local thermodynamic equilibrium line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find that the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line emission from the disk and subsequently improving agreement with observations. We find that NH3, CH3OH, C2H2, and sulfur-containing species are greatly enhanced by the inclusion of turbulent mixing. We demonstrate that disk winds potentially affect the disk chemistry and the resulting molecular line emission in a manner similar to that found when mixing is included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence of high-velocity features (HVFs) such as those seen in the near-maximum spectra of some Type Ia supernovae (SNe Ia; e. g., SN 2000cx) has been searched for in the available SN Ia spectra observed earlier than 1 week before B maximum. Recent observational efforts have doubled the number of SNe Ia with very early spectra. Remarkably, all SNe Ia with early data ( seven in our Research Training Network sample and 10 from other programs) show signs of such features, to a greater or lesser degree, in Ca II IR and some also in the Si II lambda 6355 line. HVFs may be interpreted as abundance or density enhancements. Abundance enhancements would imply an outer region dominated by Si and Ca. Density enhancements may result from the sweeping up of circumstellar material (CSM) by the highest velocity SN ejecta. In this scenario, the high incidence of HVFs suggests that a thick disk and/or a high-density companion wind surrounds the exploding white dwarf, as may be the case in single degenerate systems. Large-scale angular fluctuations in the radial density and abundance distribution may also be responsible: this could originate in the explosion and would suggest a deflagration as the more likely explosion mechanism. CSM interaction and surface fluctuations may coexist, possibly leaving different signatures on the spectrum. In some SNe, the HVFs are narrowly confined in velocity, suggesting the ejection of blobs of burned material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have undertaken a 330-360 GHz molecular line survey of the halo gas surrounding the hot core associated with G34.26+0.15. In contrast to our molecular line survey of the hot core itself, where 338 lines from at least 38 species were detected, only 18 lines from 9 species were detected in the halo. The lines are mainly single transitions of simple di atomic and triatomic molecules. Lower limits to their column densities have been evaluated by an LTE method. In the case of methanol, where four transitions were detected, the rotation temperature and column density have been evaluated by the rotation diagram technique. We have modified the previous depth-dependent chemical model developed in Paper II to calculate the column densities observed along a general line of sight drawn through the model cloud. The model is also extended to produce beam-averaged column densities for better comparison with those observed. We compare the model column densities with those observed and make recommendations for future depth-dependent chemical modelling of hot cores.