105 resultados para Nonlinear Schrodinger model


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The parametric interaction between large amplitude whistlers and ponderomotively driven quasistationary density perturbations in plasmas is considered. A cubic nonlinear Schrodinger equation is derived and then solved analytically to show the occurrence of modulational instability as well as the existence of bright and dark envelope solitons, which are referred to as whistlerons. Explicit whistleron profiles are presented and the relevance to space and laboratory plasmas is discussed. (C) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The amplitude modulation of magnetic field-aligned circularly polarized electromagnetic (CPEM) waves in a magnetized pair plasma is reexamined. The nonlinear frequency shifts include the effects of the radiation pressure driven density and compressional magnetic field perturbations as well as relativistic particle mass variations. The dynamics of the modulated CPEM wave packets is governed by a nonlinear Schrodinger equation, which has attractive and repulsive interaction potentials for fast and slow CPEM waves. The modulational stability of a constant amplitude CPEM wave is studied by deriving a nonlinear dispersion from the cubic Schrodinger equation. The fast (slow) CPEM mode is modulationally unstable (stable). Possible stationary amplitude solutions of the modulated fast (slow) CPEM mode can be represented in the form of bright and dark/gray envelope electromagnetic soliton structures. Localized envelope excitations can be associated with the microstructures in pulsar magnetospheres and in laboratory pair magnetoplasmas. (C) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Nonlinear self-modulation of dust acoustic waves is studied in the presence of non-thermal (non-Maxwellian) ion and electron populations. By employing a multiple scale technique, a nonlinear Schrodinger-type equation (NLSE) is derived for the wave amplitude. The influence of non-thermality, in addition to obliqueness (between the propagation and modulation directions), on the conditions for modulational instability to occur is discussed. Different types of localized solutions (envelope excitations) which may possibly occur are discussed, and the dependence of their characteristics oil physical parameters is traced. The ion deviation from a Maxwellian distribution comes out to be more important than the electron analogous deviation alone. Both yield a de-stabilizing effect oil (the amplitude of) DAWs propagating in a dusty plasma with negative dust grains, and thus favour the formation of bright- (rather than dark-) type envelope structures, (solitons) in the plasma. A similar tendency towards amplitude de-stabilization is found for the ease of the presence of positively charged dust in the plasma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonlinear coupling between two perpendicularly propagating ( with respect to the external magnetic field direction) upper-hybrid ( UH) waves in a uniform magnetoplasma is considered, taking into account quasi-stationary density perturbations which are driven by the UH wave ponderomotive force. This interaction is governed by a pair of coupled nonlinear Schrodinger equations ( CNLSEs) for the UH wave envelopes. The CNLSEs are used to investigate the occurrence of modulational instability. Waves in the vicinity of the UH resonance are considered, so that the group dispersion terms for both waves are approximately equal, but the UH wave group velocities may be different. It is found that a pair of unstable UH waves ( obeying anomalous group dispersion) yields an increased instability growth rate, while a pair of stable UH waves ( individually obeying normal group dispersion) remains stable for equal group velocities, although it is destabilized by a finite group velocity mismatch. Stationary nonlinear solutions of the CNLSEs are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonlinear coupling between two magnetic-field-aligned electromagnetic electron-cyclotron (EMEC) waves in plasmas is considered. Evaluating the ponderomotive coupling between the EMEC waves and quasistationary plasma density perturbations, a pair of coupled nonlinear Schrodinger equations (CNLSEs) is obtained. The CNLSEs are then used to investigate the occurrence of modulational instability in magnetized plasmas. Waves in the vicinity of the zero-group-dispersion point are considered, so that the group dispersion terms may either bear the same or different signs. It is found that a stable EMEC wave can be destabilized due to its nonlinear interactions with an unstable one, while a pair of unstable EMEC waves yields an increased instability growth rate. Individually stable waves remain stable while interacting with one another. Stationary nonlinear solutions of the coupled equations are presented. The relevance of our investigation to nonlinear phenomena in space plasmas is discussed. (c) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonlinear interaction between magnetic-field-aligned coherent whistlers and dust-acoustic perturbations (DAPs) in a magnetized dusty plasma is considered. The interaction is governed by a pair of equations consisting of a nonlinear Schrodinger equation for the modulated whistler wave packet and an equation for the nonresonant DAPs in the presence of the ponderomotive force generated by the whistlers. The coupled equations are employed to investigate the occurrence of modulational instability, in addition to the formation of whistler envelope solitons. This investigation is relevant to amplitude modulated electron whistlers in magnetized space dusty plasmas. (c) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oblique modulational instability of dust acoustic (DA) waves in an unmagnetized warm dusty plasma with nonthermal ions, taking into account dust grain charge variation (charging), is investigated. A nonlinear Schrodinger-type equation governing the slow modulation of the wave amplitude is derived. The effects of dust temperature, dust charge variation, ion deviation from Maxwellian equilibrium (nonthermality) and constituent species' concentration on the modulational instability of DA waves are examined. It is found that these parameters modify significantly the oblique modulational instability domain in the k-theta plane. Explicit expressions for the instability rate and threshold have been obtained in terms of the dispersion laws of the system. The possibility and conditions for the existence of different types of localized excitations are also discussed. The findings of this investigation may be useful in understanding the stable electrostatic wave packet acceleration mechanisms close to the Moon, and also enhances our knowledge on the occurrence of instability associated to pickup ions around unmagnetized bodies, such as comets, Mars, and Venus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The amplitude modulation of dust lattice waves (DLWs) propagating in a two-dimensional hexagonal dust crystal is investigated in a continuum approximation, accounting for the effect of dust charge polarization (dressed interactions). A dusty plasma crystalline configuration with constant dust grain charge and mass is considered. The dispersion relation and the group velocity for DLWs are determined for wave propagation in both longitudinal and transverse directions. The reductive perturbation method is used to derive a (2+1)-dimensional nonlinear Schrodinger equation (NLSE). New expressions for the coefficients of the NLSE are derived and compared, for a Yukawa-type potential energy and for a

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An analytical and numerical investigation is presented of the behavior of a linearly polarized electromagnetic pulse as it propagates through a plasma. Considering a weakly relativistic regime, the system of one-dimensional fluid-Maxwell equations is reduced to a generalized nonlinear Schrodinger type equation, which is solved numerically using a split step Fourier method. The spatio-temporal evolution of an electromagnetic pulse is investigated. The evolution of the envelope amplitude of density harmonics is also studied. An electromagnetic pulse propagating through the plasma tends to broaden due to dispersion, while the nonlinear frequency shift is observed to slow down the pulse at a speed lower than the group velocity. Such nonlinear effects are more important for higher density plasmas. The pulse broadening factor is calculated numerically, and is shown to be related to the background plasma density. In particular, the broadening effect appears to be stronger for dense plasmas. The relation to existing results on electromagnetic pulses in laser plasmas is discussed. (c) 2008 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study is presented of the nonlinear self-modulation of low-frequency electrostatic (dust acoustic) waves propagating in a dusty plasma, in the presence of a superthermal ion (and Maxwellian electron) background. A kappa-type superthermal distribution is assumed for the ion component, accounting for an arbitrary deviation from Maxwellian equilibrium, parametrized via a real parameter kappa. The ordinary Maxwellian-background case is recovered for kappa ->infinity. By employing a multiple scales technique, a nonlinear Schrodinger-type equation (NLSE) is derived for the electric potential wave amplitude. Both dispersion and nonlinearity coefficients of the NLSE are explicit functions of the carrier wavenumber and of relevant physical parameters (background species density and temperature, as well as nonthermality, via kappa). The influence of plasma background superthermality on the growth rate of the modulational instability is discussed. The superthermal feature appears to control the occurrence of modulational instability, since the instability window is strongly modified. Localized wavepackets in the form of either bright-or dark-type envelope solitons, modeling envelope pulses or electric potential holes (voids), respectively, may occur. A parametric investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are affected by superthermality, as well as by relevant plasma parameters (dust concentration, ion temperature).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Starting from Maxwell's equations, we use the reductive perturbation method to derive a second-order and a third-order nonlinear Schrodinger equation, describing ultrashort solitons in nonlinear left-handed metamaterials. We find necessary conditions and derive exact bright and dark soliton solutions of these equations for the electric and magnetic field envelopes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A multiple scales technique is employed to solve the fluid-Maxwell equations describing a weakly nonlinear circularly polarized electromagnetic pulse in magnetized plasma. A nonlinear Schrodinger-type (NLS) equation is shown to govern the amplitude of the vector potential. The conditions for modulational instability and for the existence of various types of localized envelope modes are investigated in terms of relevant parameters. Right-hand circularly polarized (RCP) waves are shown to be modulationally unstable regardless of the value of the ambient magnetic field and propagate as bright-type solitons. The same is true for left-hand circularly polarized (LCP) waves in a weakly to moderately magnetized plasma. In other parameter regions, LCP waves are stable in strongly magnetized plasmas and may propagate as dark-type solitons (electric field holes). The evolution of envelope solitons is analyzed numerically, and it is shown that solitons propagate in magnetized plasma without any essential change in amplitude and shape. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the presence of inhomogeneities, defects and currents, the equations describing a Bose-condensed ensemble of alkali atoms have to be solved numerically. By combining both linear and nonlinear equations within a Discrete Variable Representation framework, we describe a computational scheme for the solution of the coupled Bogoliubov-de Gennes (BdG) and nonlinear Schrodinger (NLS) equations for fields in a 3D spheroidal potential. We use the method to calculate the collective excitation spectrum and quasiparticle mode densities for excitations of a Bose condensed gas in a spheroidal trap. The method is compared against finite-difference and spectral methods, and we find the DVR computational scheme to be superior in accuracy and efficiency for the cases we consider. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonlinear dynamics of electrostatic solitary waves in the form of localized modulated wavepackets is investigated from first principles. Electron-acoustic (EA) excitations are considered in a two-electron plasma, via a fluid formulation. The plasma, assumed to be collisionless and uniform (unmagnetized), is composed of two types of electrons (inertial cold electrons and inertialess kappa-distributed superthermal electrons) and stationary ions. By making use of a multiscale perturbation technique, a nonlinear Schrodinger equation is derived for the modulated envelope, relying on which the occurrence of modulational instability (MI) is investigated in detail. Stationary profile localized EA excitations may exist, in the form of bright solitons (envelope pulses) or dark envelopes (voids). The presence of superthermal electrons modifies the conditions for MI to occur, as well as the associated threshold and growth rate. The concentration of superthermal electrons (i.e., the deviation from a Maxwellian electron distribution) may control or even suppress MI. Furthermore, superthermality affects the characteristics of solitary envelope structures, both qualitatively (supporting one or the other type, for different.) and quantitatively, changing their characteristics (width, amplitude). The stability of bright and dark-type nonlinear structures is confirmed by numerical simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport. © 2013 American Physical Society.