60 resultados para Non-linear beam theory
Resumo:
A simple non-linear global-local finite element methodology is presented. A global coarse model, using 2-D shell elements, is solved non-linearly and the displacements and rotations around a region of interest are applied, as displacement boundary conditions, to a refined local 3-D model using Kirchhoff plate assumptions. The global elements' shape functions are used to interpolate between nodes. The local model is then solved non-linearly with an incremental scheme independent of that used for the global model.
Resumo:
We consider two interlinked non-linear interactions occurring simultaneously in a single chi((2)) crystal. Classical and quantum working regimes are considered and their peculiar properties analysed. In particular, we describe an experiment, realized in the classical regime, that verifies the holographic nature of the process, and predict, for the quantum regime, the generation of a fully inseparable tripartite Gaussian state of light that can be used to support a general 1--> 2 continuous variable telecloning protocol.
Resumo:
In the last decade, many side channel attacks have been published in academic literature detailing how to efficiently extract secret keys by mounting various attacks, such as differential or correlation power analysis, on cryptosystems. Among the most efficient and widely utilized leakage models involved in these attacks are the Hamming weight and distance models which give a simple, yet effective, approximation of the power consumption for many real-world systems. These leakage models reflect the number of bits switching, which is assumed proportional to the power consumption. However, the actual power consumption changing in the circuits is unlikely to be directly of that form. We, therefore, propose a non-linear leakage model by mapping the existing leakage model via a transform function, by which the changing power consumption is depicted more precisely, hence the attack efficiency can be improved considerably. This has the advantage of utilising a non-linear power model while retaining the simplicity of the Hamming weight or distance models. A modified attack architecture is then suggested to yield the correct key efficiently in practice. Finally, an empirical comparison of the attack results is presented.
Resumo:
The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Probing the functionality of materials locally by means of scanning probe microscopy (SPM) requires a reliable framework for identifying the target signal and separating it from the effects of surface morphology and instrument non-idealities, e.g. instrumental and topographical cross-talk. Here we develop a linear resolution theory framework in order to describe the cross-talk effects, and apply it for elucidation of frequency-dependent cross-talk mechanisms in piezoresponse force microscopy. The use of a band excitation method allows electromechanical/electrical and mechanical/topographic signals to be unambiguously separated. The applicability of a functional fit approach and multivariate statistical analysis methods for identification of data in band excitation SPM is explored.
Resumo:
Quantitative scaling relationships among body mass, temperature and metabolic rate of organisms are still controversial, while resolution may be further complicated through the use of different and possibly inappropriate approaches to statistical analysis. We propose the application of a modelling strategy based on the theoretical approach of Akaike's information criteria and non-linear model fitting (nlm). Accordingly, we collated and modelled available data at intraspecific level on the individual standard metabolic rate of Antarctic microarthropods as a function of body mass (M), temperature (T), species identity (S) and high rank taxa to which species belong (G) and tested predictions from metabolic scaling theory (mass-metabolism allometric exponent b = 0.75, activation energy range 0.2-1.2 eV). We also performed allometric analysis based on logarithmic transformations (lm). Conclusions from lm and nlm approaches were different. Best-supported models from lm incorporated T, M and S. The estimates of the allometric scaling exponent linking body mass and metabolic rate resulted in a value of 0.696 +/- 0.105 (mean +/- 95% CI). In contrast, the four best-supported nlm models suggested that both the scaling exponent and activation energy significantly vary across the high rank taxa (Collembola, Cryptostigmata, Mesostigmata and Prostigmata) to which species belong, with mean values of b ranging from about 0.6 to 0.8. We therefore reached two conclusions: 1, published analyses of arthropod metabolism based on logarithmic data may be biased by data transformation; 2, non-linear models applied to Antarctic microarthropod metabolic rate suggest that intraspecific scaling of standard metabolic rate in Antarctic microarthropods is highly variable and can be characterised by scaling exponents that greatly vary within taxa, which may have biased previous interspecific comparisons that neglected intraspecific variability.
Resumo:
Composite beams with large web openings are often used, and their design is controlled by Vierendeel bending at the four corners of each opening, which is assisted by local composite action with the floor slab. Development of this Vierendeel bending resistance may be limited by pull-out failure of the shear connectors. In this paper, a non-linear elasto-plastic finite element model of a composite beam with web openings was used to investigate this mode of pull-out failure. A test was performed on a typical composite slab in which the shear connectors were subject to pure tension and the failure load was 67 kN, which is approximately 70% of the longitudinal shear resistance. The results of the finite element model are compared against those obtained using the established design theory, that does not limit the vertical pull-out resistance of the shear connectors. It is shown that the local bending resistance due to composite action should be reduced when limited by pull-out of the shear connectors. A parametric study investigated the effect of openings of 600 to 1200 mm length. A simple model is developed to establish the Vierendeel bending resistance, when limited by pull-out of the shear connectors.
Resumo:
One of the first attempts to develop a formal model of depth cue integration is to be found in Maloney and Landy's (1989) "human depth combination rule". They advocate that the combination of depth cues by the visual sysetem is best described by a weighted linear model. The present experiments tested whether the linear combination rule applies to the integration of texture and shading. As would be predicted by a linear combination rule, the weight assigned to the shading cue did vary as a function of its curvature value. However, the weight assigned to the texture cue varied systematically as a function of the curvature value of both cues. Here we descrive a non-linear model which provides a better fit to the data. Redescribing the stimuli in terms of depth rather than curvature reduced the goodness of fit for all models tested. These results support the hypothesis that the locus of cue integration is a curvature map, rather than a depth map. We conclude that the linear comination rule does not generalize to the integration of shading and texture, and that for these cues it is likely that integration occurs after the recovery of surface curvature.
Resumo:
The tailpipe emissions from automotive engines have been subject to steadily reducing legislative limits. This reduction has been achieved through the addition of sub-systems to the basic four-stroke engine which thereby increases its complexity. To ensure the entire system functions correctly, each system and / or sub-systems needs to be continuously monitored for the presence of any faults or malfunctions. This is a requirement detailed within the On-Board Diagnostic (OBD) legislation. To date, a physical model approach has been adopted by me automotive industry for the monitoring requirement of OBD legislation. However, this approach has restrictions from the available knowledge base and computational load required. A neural network technique incorporating Multivariant Statistical Process Control (MSPC) has been proposed as an alternative method of building interrelationships between the measured variables and monitoring the correct operation of the engine. Building upon earlier work for steady state fault detection, this paper details the use of non-linear models based on an Auto-associate Neural Network (ANN) for fault detection under transient engine operation. The theory and use of the technique is shown in this paper with the application to the detection of air leaks within the inlet manifold system of a modern gasoline engine whilst operated on a pseudo-drive cycle. Copyright © 2007 by ASME.
Resumo:
A constrained non-linear, physical model-based, predictive control (NPMPC) strategy is developed for improved plant-wide control of a thermal power plant. The strategy makes use of successive linearisation and recursive state estimation using extended Kalman filtering to obtain a linear state-space model. The linear model and a quadratic programming routine are used to design a constrained long-range predictive controller One special feature is the careful selection of a specific set of plant model parameters for online estimation, to account for time-varying system characteristics resulting from major system disturbances and ageing. These parameters act as nonstationary stochastic states and help to provide sufficient degrees-of-freedom to obtain unbiased estimates of controlled outputs. A 14th order non-linear plant model, simulating the dominant characteristics of a 200 MW oil-fired pou er plant has been used to test the NPMPC algorithm. The control strategy gives impressive simulation results, during large system disturbances and extremely high rate of load changes, right across the operating range. These results compare favourably to those obtained with the state-space GPC method designed under similar conditions.
Resumo:
This paper summarises the results obtained from non-linear finite-element analysis (NLFEA) of a series of reinforced-concrete one-way slabs with various boundary conditions representative of a bridge deck slab strip in which compressive membrane action governs the structural behaviour. The application of NLFEA for the optimum analysis and design of in-plane restrained concrete slabs is explored. An accurate material model and various equation solution methods were assessed to find a suitable finite-element method for the analysis of concrete slabs in which arching action occurs. Finally, the results from the NLFEA are compared and validated with those from various experimental test data. Significantly, the numerical analysis was able to model the arching action that occurred as a result of external in-plane restraint at the supports and which enhanced the ultimate strength of the slab. The NLFEA gave excellent predictions for the ultimate load-carrying capacity and far more accurate predictions than those obtained using standard flexural or elastic theory.