50 resultados para Neutron scattering and diffraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSC), temperature programmed desorption mass spectrometry (TPD-MS) and small angle neutron scattering (SANS) were used to investigate CO2 uptake by the Wyodak coal. The adsorption of carbon dioxide on Wyodak coal was studied by DSC. The exotherms evident at low temperatures are associated with the uptake of CO2 suggesting that carbon dioxide interacts strongly with the coal surface. The reduction in the value of the exotherms between the first and second runs for the Wyodak coal suggests that some CO2 is irreversibly bound to the structure even after heating to 200 °C DSC results also showed that adsorption of CO2 on the coal surface is an activated process and presumably at the temperature of the exotherms there is enough thermal energy to overcome the activation energy for adsorption. The adsorption process is instantly pursued by much slower diffusion of the gas molecules into the coal matrix (absorption). Structural rearrangement in coal by CO2 is examined by change in the glass transition temperature of coal after CO2 uptake at different pressures. The amount of gas dissolved in the coal increases with increasing CO2 pressure. TPD-MS showed that CO2 desorption from the Wyodak coal follows a first order kinetic model. Increase in the activation energy for desorption with pre-adsorbed CO2 pressure suggests that higher pressures facilitate the transport of CO2 molecules through the barriers therefore the amount of CO2 uptake by the coal is greater at higher pressures and more attempts are required to desorb CO2 molecules sorbed at elevated pressures. These conclusions were further confirmed by examining the Wyodak coal structure in high pressure CO 2 by SANS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of the physiological functions of von Willebrand Factor (VWF), including its binding interaction with blood platelets, are regulated by the magnitude of applied fluid/hydrodynamic stress. We applied two complementary strategies to study the effect of fluid forces on the solution structure of VWF. First, small-angle neutron scattering was used to measure protein conformation changes in response to laminar shear rates (G) up to 3000/s. Here, purified VWF was sheared in a quartz Couette cell and protein conformation was measured in real time over length scales from 2-140 nm. Second, changes in VWF structure up to 9600/s were quantified by measuring the binding of a fluorescent probe 1,1'-bis(anilino)-4-,4'-bis(naphtalene)-8,8'-disulfonate (bis-ANS) to hydrophobic pockets exposed in the sheared protein. Small angle neutron scattering studies, coupled with quantitative modeling, showed that VWF undergoes structural changes at G < 3000/s. These changes were most prominent at length scales <10 nm (scattering vector (q) range >0.6/nm). A mathematical model attributes these changes to the rearrangement of domain level features within the globular section of the protein. Studies with bis-ANS demonstrated marked increase in bis-ANS binding at G > 2300/s. Together, the data suggest that local rearrangements at the domain level may precede changes at larger-length scales that accompany exposure of protein hydrophobic pockets. Changes in VWF conformation reported here likely regulate protein function in response to fluid shear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An acid-labile dimethaerylate acetal cross-linker,di(methacryloyloxy-l-ethoxy)methane(DMOEM), was synthesized by the reaction of 2-hydroxyethyl methacrylate and paraformaldehyde using p-toluenesulfonic acid and toluene as catalyst and solvent, respectively. Group transfer polymerization was employed to use this cross-linker in the preparation of nine hydrolyzable polymer structures: one neat cross-linker network, one randomly cross-linked network of methyl methacrylate (MMA), and seven star-shaped polymers of MMA. Gel permeation chromatography (GPC) in tetrahydrofuran (THF) confirmed the narrow molecular weight distributions of the linear polymer precursors to the stars and demonstrated the increase in molecular weight upon the addition of cross-linker for the formation of star-shaped polymers. Characterization of the star polymers in THF using static light scattering and GPC showed that the molecular weights and the number of arms of each star polymer increased with an increase in the molar ratio of cross-linker to initiator and with a decrease in the molar ratio of monomer to initiator. The star polymers with DMOEM cores bore a smaller number of arms than those cross-linked with the non-hydrolyzable commercial cross-linker ethylene glycol dimethacrylate due to the bulkier structure of DMOEM. All DMOEM-containing polymer networks and star polymers were completely hydrolyzed within 48 h using hydrochloric acid in THF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dielectric function of a YBCO film was determined at 3392nm at temperatures down to 80K. Results obtained were epsilon(i) = -24.09 - 0.0013T and epsilon(i) = 7.66 + 0.067T. The results for epsilon(i) are compared with the de resistance of the film. Intrinsic intragrain scattering, elastic and inelastic grain boundary scattering and optical interband absorption are estimated as 82%, 5%, 13% and 10% respecively at 0K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase behavior of two types of poly(ethylene oxide)/poly(propylene oxide) (PEO/PPO) copolymers in aqueous solutions was studied by light scattering, viscometry, and infrared spectroscopy. Both the reverse poloxamer (Pluronic 10R5) and the star type poloxamine (Tetronic 90R4) have practically the same PEO/PPO ratio with their hydrophobic blocks (PPO) located in the outer part. The temperature-composition phase diagrams show that both 10R5 and 90R4 tend to form aggregates in water. Up to four different phases can be detected in the case of Tetronic 90R4 for each temperature: unimers, random networks, micellar networks, and macrophase separation. Viscometric and infrared measurements complemented the results obtained by light scattering and visual inspection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In gastric cancer (GC), the main subtypes (diffuse and intestinal types) differ in pathological characteristics, with diffuse GC exhibiting early disseminative and invasive behaviour. A distinctive feature of diffuse GC is loss of intercellular adhesion. Although widely attributed to mutations in the CDH1 gene encoding E-cadherin, a significant percentage of diffuse GC do not harbor CDH1 mutations. We found that the expression of the actin-modulating cytoskeletal protein, gelsolin, is significantly higher in diffuse-type compared to intestinal-type GCs, using immunohistochemical and microarray analysis. Furthermore, in GCs with wild-type CDH1, gelsolin expression correlated inversely with CDH1 gene expression. Downregulating gelsolin using siRNA in GC cells enhanced intercellular adhesion and E-cadherin expression, and reduced invasive capacity. Interestingly, hepatocyte growth factor (HGF) induced increased gelsolin expression, and gelsolin was essential for HGF-medicated cell scattering and E-cadherin transcriptional repression through Snail, Twist and Zeb2. The HGF-dependent effect on E-cadherin was found to be mediated by interactions between gelsolin and PI3K-Akt signaling. This study reveals for the first time a function of gelsolin in the HGF/cMet oncogenic pathway, which leads to E-cadherin repression and cell scattering in gastric cancer. Our study highlights gelsolin as an important pro-disseminative factor contributing to the aggressive phenotype of diffuse GC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A many-body theory approach is developed for the problem of positron-atom scattering and annihilation. Strong electron- positron correlations are included nonperturbatively through the calculation of the electron-positron vertex function. It corresponds to the sum of an infinite series of ladder diagrams, and describes the physical effect of virtual positronium formation. The vertex function is used to calculate the positron-atom correlation potential and nonlocal corrections to the electron-positron annihilation vertex. Numerically, we make use of B-spline basis sets, which ensures rapid convergence of the sums over intermediate states. We have also devised an extrapolation procedure that allows one to achieve convergence with respect to the number of intermediate- state orbital angular momenta included in the calculations. As a test, the present formalism is applied to positron scattering and annihilation on hydrogen, where it is exact. Our results agree with those of accurate variational calculations. We also examine in detail the properties of the large correlation corrections to the annihilation vertex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When operated with a metallic tip and sample the scanning tunnelling microscope constitutes a nanoscale, plasmonic light source yielding broadband emission up to a photon energy determined by the applied bias. The emission is due to tunnelling electron excitation and subsequent radiative decay of localized plasmon modes, which can be on the lateral scale of a single metal grain (similar to 25 nm) or less. For a Au-tip/Au-polycrystalline sample under ambient conditions it is found that the intensity and spectral content of the emitted light are not dependent on the lateral grain dimension, but are predominantly determined by the tip geometry. However, the intensity increases strongly with increasing film thickness (grain depth) up to 20-25 nm or approximately the skin depth of the Au film. Photon maps can show less emissive grains and two classes of this occurrence are distinguished. The first is geometrical in origin - a double-tip structure in this case - while the second is due to a contamination-induced lowering of the local work function that causes the tunnel gap to increase. It is suggested that differences in work-function lowering between grains presenting different crystalline facets, combined with an exponential decay in emitted light intensity with tip - sample distance, leads to grain contrast. These results are relevant to tip-enhanced Raman scattering and the fabrication of micro/nano-scale planar, light-emitting tunnel devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both experimental and theoretical information regarding the scattering and phase conjugate mixing properties of a 2D double-periodic array of wires loaded with nonlinear/linear lumped elements have been provided. An experimental means for assessing the phase conjugate energy production capability for the array is given. These investigations enable identification of the fundamental operational characteristics and underlying mechanisms associated with the production of phase conjugate energy by this type of artificial electromagnetic media. Means for enhancing the phase conjugate energy production capability of the structure by using additional linear lumped loads is examined theoretically and limits on the production of phase conjugate energy established. Theoretical far-field prediction of the behaviour of the structure indicates that retro-directive reflector action as well as negative refraction should be possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a diagnostic of high-intensity laser interactions (> 10(19) W cm(-2)), the detection of radioactive isotopes is regularly used for the characterization of proton, neutron, ion, and photon beams. This involves sample removal from the interaction chamber and time consuming post shot analysis using NaI coincidence counting or Ge detectors. This letter describes the use of in situ detectors to measure laser-driven (p,n) reactions in Al-27 as an almost real-time diagnostic for proton acceleration. The produced Si-27 isotope decays with a 4.16 s half-life by the predominantly beta+ emission, producing a strong 511 keV annihilation peak. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-dimensional Monte Carlo code for modelling radiation transport in Type Ia supernovae is described. In addition to tracking Monte Carlo quanta to follow the emission, scattering and deposition of radiative energy, a scheme involving volume-based Monte Carlo estimators is used to allow properties of the emergent radiation field to be extracted for specific viewing angles in a multidimensional structure. This eliminates the need to compute spectra or light curves by angular binning of emergent quanta. The code is applied to two test problems to illustrate consequences of multidimensional structure on the modelling of light curves. First, elliptical models are used to quantify how large-scale asphericity can introduce angular dependence to light curves. Secondly, a model which incorporates complex structural inhomogeneity, as predicted by modern explosion models, is used to investigate how such structure may affect light-curve properties. © 2006 RAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present ab initio quantum chemistry calculations for elastic scattering and the radiative charge transfer reaction process and collision rates for trapped ytterbium ions immersed in a quantum degenerate rubidium vapor.
The collision of the ion (or ions) with the quasiatom is the key mechanism to transfer quantum coherences between the systems. We use first-principles
quantum chemistry codes to obtain the potential surfaces and coupling terms for the two-body interaction of Yb^+ with Rb. We find that the low energy collision has an inelastic radiative charge transfer process in agreement with recent experiments.
The charge transfer cross section agrees well with the semiclassical Langevin model at higher energies but is dominated by resonances at submillikelvin temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of the combinatorial frequency generation and wave scattering by periodic stacks of nonlinear passive semiconductor layers are explored. It is demonstrated that the nonlinearity in passive weakly nonlinear semiconductor medium has the resistive nature associated with the dynamics of carriers. The features of the combinatorial frequency generation and the effects of the pump wave scattering and parameters of the constituent semiconductor layers on the efficiency of the frequency mixing are discussed and illustrated by the examples. © 2013 IEICE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have excited mid-infrared surface plasmons in two YBCO thin films of contrasting properties using attenuated total reflection of light and found that the imaginary part of the dielectric function decreases linearly with reduction in temperature. This result is in contrast with the commonly reported conclusion of infrared normal reflectance studies. If sustained it may clarify the problem of understanding the normal state properties of YBCO and the other cuprates. The dielectric function of the films, epsilon = epsilon(1) + i epsilon(2), was determined between room temperature and 80K: epsilon(1) was found to be only slightly temperature dependent but somewhat sample dependent, probably as a result of surface and grain boundary contamination. The imaginary part, epsilon(2), (and the real part of the conductivity, sigma(1),) decreased linearly with reduction in temperature in both films. Results obtained were: for film 1: epsilon(1) = - 14.05 - 0.0024T and epsilon(2) - 4.11 + 0.086T and for film 2: epsilon(1) = - 24.09 + 0.0013T and epsilon(2) = 7.66 + 0.067T where T is the temperature in Kelvin. An understanding of the results is offered in terms of temperature-dependent intrinsic intragrain inelastic scattering and temperature-independent contributions: elastic and inelastic grain boundary scattering and optical interband (or localised charge) absorption. The relative contribution of each is estimated. A key conclusion is that the interband (or localised charge) absorption is only similar to 10%. Most importantly, the intrinsic scattering rate, 1/tau, decreases linearly with fall in temperature, T, in a regime where current theory predicts dependence on frequency, omega, to dominate. The coupling constant, lambda, between the charge carriers and the thermal excitations has a value of 1.7, some fivefold greater than the far infrared value. These results imply a need to restate the phenomenology of the normal state of high temperature superconductors and seek a corresponding theoretical understanding.