35 resultados para Nanometer-sized carbides
Resumo:
We characterize the planetary system Kepler-101 by performing a combined differential evolution Markov chain Monte Carlo analysisof Kepler data and forty radial velocities obtained with the HARPS-N spectrograph. This system was previously validated and iscomposed of a hot super-Neptune, Kepler-101b, and an Earth-sized planet, Kepler-101c. These two planets orbit the slightly evolvedand metal-rich G-type star in 3.49 and 6.03 days, respectively. With mass Mp = 51.1+5.1−4.7 M⊕, radius Rp = 5.77+0.85−0.79 R⊕, and density ρp = 1.45+0.83 −0.48 g cm−3, Kepler-101b is the first fully characterized super-Neptune, and its density suggests that heavy elements makeup a significant fraction of its interior; more than 60% of its total mass. Kepler-101c has a radius of 1.25+0.19−0.17 R⊕, which implies theabsence of any H/He envelope, but its mass could not be determined because of the relative faintness of the parent star for highly precise radial-velocity measurements (Kp = 13.8) and the limited number of radial velocities. The 1σ upper limit, Mp < 3.8 M⊕, excludes a pure iron composition with a probability of 68.3%. The architecture of the planetary system Kepler-101 − containing aclose-in giant planet and an outer Earth-sized planet with a period ratio slightly larger than the 3:2 resonance − is certainly of interest for scenarios of planet formation and evolution. This system does not follow the previously reported trend that the larger planet has the longer period in the majority of Kepler systems of planet pairs with at least one Neptune-sized or larger planet.
Resumo:
Carbides are important phases in heterogeneous catalysis. However, the understanding of carbide phases is inadequate: Fe and Co are the two commercial catalysts for Fischer-Tropsch (FT) synthesis, and experimental work showed that Fe carbide is the active phase in FT synthesis, whereas the appearance of Co carbide is considered as a possible deactivation cause, TO understand very different catalytic roles of carbides, all the key elementary steps in FT synthesis, that is, CO dissociation, C(1) hydrogenation, and C(1)+C(1) coupling, are extensively investigated on both carbide surfaces using first principles calculations. In particular, the most important issues in FT synthesis, the activity and methane selectivity, on the carbide surfaces are quantitatively determined and analyzed. They are also discussed together with metallic Fe and Co surfaces. It is found that (i) Fe carbide is more active than metallic Fe and has similar methane selectivity to Fe, being consistent with the experiments; and (ii) Co carbide is less active than Co and has higher methane selectivity, providing evidence on the molecular level to support the suggestion that the formation of Co carbide is a cause of relatively high methane selectivity and deactivation on Co catalysts.
Resumo:
In exploration of low-cost electrocatalysts for direct methanol fuel cells (DMFCs), Pt modified tungsten carbide (WC) materials are found to be great potential candidates for decreasing Pt usage whilst exhibiting satisfactory reactivity. In this work, the mechanisms, onset potentials and activity for electrooxidation of methanol were studied on a series of Pt-modified WC catalysts where the bare W-terminated WC(0001) substrate was employed. In the surface energy calculations of a series of Pt-modified WC models, we found that the feasible structures are mono- and bi-layer Pt-modified WCs. The tri-layer Pt-modified WC model is not thermodynamically stable where the top layer Pt atoms tend to accumulate and form particles or clusters rather than being dispersed as a layer. We further calculated the mechanisms of methanol oxidation on the feasible models via methanol dehydrogenation to CO involving C-H and O-H bonds dissociating subsequently, and further CO oxidation with the C-O bond association. The onset potentials for the oxidation reactions over the Pt-modified WC catalysts were determined thermodynamically by water dissociation to surface OH* species. The activities of these Pt-modified WC catalysts were estimated from the calculated kinetic data. It has been found that the bi-layer Pt-modified WC catalysts may provide a good reactivity and an onset oxidation potential comparable to pure Pt and serve as promising electrocatalysts for DMFCs with a significant decrease in Pt usage.
Resumo:
We propose to observe the M8.5 dwarf SCR J1845-6357 with XMM-Newton EPIC for 60 ks. Very low-mass M dwarfs show a distinct drop in X-ray luminosity compared to slightly more massive M dwarfs. Surprisingly, this does not happen at the mass threshold where M dwarfs become fully convective (M4), but at significantly lower masses (M8). These very low mass stars seem to have a flaring behaviour different from earlier type stars: they display either occasional large flares or a very low-level "flickering" in their X-ray light curves, but not the canonical power-law flare-energy distribution observed for the Sun and other cool stars. Our aim is to collect a long-duration light curve for one of the most nearby ultracool dwarfs to quantify how its flare-energy distribution differs from earlier type stars.