59 resultados para Musical rhythms
Resumo:
In this chapter the authors explore a practice-led approach to understanding the role of the body in music performance.
Many writers have discussed the body in music performance, in improvised music, as well as in electronic music. In this chapter the authors offer new modalities of reflection on the musical body in the interpretation of existing contemporary repertoire. Specifically, the authors discuss a re-interpretation of German composer Karlheinz Stockhausen's musical work 'Tierkreis'. Through the development of a specifically physical approach to the performance, the authors investigate the intrinsic relationship between the body and the music and point to an under-explored modality, which is not a musical choreography, but a choreography that is shaped through the musical body itself. It is a modality in which music itself propels forward choreographic ideas, the body becoming the driving force behind musical interpretation. The authors' thinking is influenced by Susan Kozel’s understanding of performance as an ecosystem (Kozel 2007) and framed within a subjective account of musical embodiment.
By merging theory with praxis the authors offer a deeper understanding of the role of the body in music performance and consider how such contributions might lead to new and exciting interpretive frameworks for existing musical repertoires.
Resumo:
Human listeners seem to have an impressive ability to recognize a wide variety of natural sounds. However, there is surprisingly little quantitative evidence to characterize this fundamental ability. Here the speed and accuracy of musical-sound recognition were measured psychophysically with a rich but acoustically balanced stimulus set. The set comprised recordings of notes from musical instruments and sung vowels. In a first experiment, reaction times were collected for three target categories: voice, percussion, and strings. In a go/no-go task, listeners reacted as quickly as possible to members of a target category while withholding responses to distractors (a diverse set of musical instruments). Results showed near-perfect accuracy and fast reaction times, particularly for voices. In a second experiment, voices were recognized among strings and vice-versa. Again, reaction times to voices were faster. In a third experiment, auditory chimeras were created to retain only spectral or temporal features of the voice. Chimeras were recognized accurately, but not as quickly as natural voices. Altogether, the data suggest rapid and accurate neural mechanisms for musical-sound recognition based on selectivity to complex spectro-temporal signatures of sound sources.
Resumo:
As NIME's focus has expanded beyond the design reports which were pervasive in the early days to include studies and experiments involving music control devices, we report on a particular area of activity that has been overlooked: designs of music devices in experimental contexts. We demonstrate this is distinct from designing for artistic performances, with a unique set of novel challenges. A survey of methodological approaches to experiments in NIME reveals a tendency to rely on existing instruments or evaluations of new devices designed for broader creative application. We present two examples from our own studies that reveal the merits of designing purpose-built devices for experimental contexts.
Resumo:
Organisms respond to cyclical environmental conditions by entraining their endogenous biological rhythms. Such physiological responses are expected to be substantial for species inhabiting arid environments which incur large variations in daily and seasonal ambient temperature (T). We measured core body temperature (T) daily rhythms of Cape ground squirrels Xerus inauris inhabiting an area of Kalahari grassland for six months from the Austral winter through to the summer. Squirrels inhabited two different areas: an exposed flood plain and a nearby wooded, shady area, and occurred in different social group sizes, defined by the number of individuals that shared a sleeping burrow. Of a suite of environmental variables measured, maximal daily T provided the greatest explanatory power for mean T whereas sunrise had greatest power for T acrophase. There were significant changes in mean T and T acrophase over time with mean T increasing and T acrophase becoming earlier as the season progressed. Squirrels also emerged from their burrows earlier and returned to them later over the measurement period. Greater increases in T, sometimes in excess of 5°C, were noted during the first hour post emergence, after which T remained relatively constant. This is consistent with observations that squirrels entered their burrows during the day to 'offload' heat. In addition, greater T amplitude values were noted in individuals inhabiting the flood plain compared with the woodland suggesting that squirrels dealt with increased environmental variability by attempting to reduce their T-T gradient. Finally, there were significant effects of age and group size on T with a lower and less variable T in younger individuals and those from larger group sizes. These data indicate that Cape ground squirrels have a labile T which is sensitive to a number of abiotic and biotic factors and which enables them to be active in a harsh and variable environment.
Resumo:
Resumo:
Daily and seasonal variations in physiological characteristics of mammals can be considered adaptations to temporal habitat variables. Across different ecosystems, physiological adjustments are expected to be sensitive to different environmental signals such as changes in photoperiod, temperature or water and food availability; the relative importance of a particular signal being dependent on the ecosystem in question. Energy intake, oxygen consumption (VO) and body temperature (T) daily rhythms were compared between two populations of the broad-toothed field mouse Apodemus mystacinus, one from a Mediterranean and another from a sub-Alpine ecosystem. Mice were acclimated to short-day (SD) 'winter' and long-day (LD) 'summer' photoperiods under different levels of salinity simulating osmotic challenges. Mediterranean mice had higher VO values than sub-Alpine mice. In addition, mice exposed to short days had higher VO values when given water with a high salinity compared with mice exposed to long days. By comparison, across both populations, increasing salinity resulted in a decreased T in SD- but not in LD-mice. Thus, SD-mice may conserve energy by decreasing T during ('winter') conditions which are expected to be cool, whereas LD-mice might do the opposite and maintain a higher T during ('summer') conditions which are expected to be warm. LD-mice behaved to reduce energy expenditure, which might be considered a useful trait during 'summer' conditions. Overall, increasing salinity was a clear signal for Mediterranean-mice with resultant effects on VO and T daily rhythms but had less of an effect on sub-Alpine mice, which were more responsive to changes in photoperiod. Results provide an insight into how different populations respond physiologically to various environmental challenges.
Resumo:
Park Jae-Sang’s (otherwise known as PSY) bewilderingly successful pop contagion ‘Gangnam Style’ needs no introduction. As of January 2013, it has become the most watched video in YouTube’s history and has garnered over 1.23 billion hits since. ‘Gangnam Style’ has also become a rapid global pop phenomenon with multiple parodic reproductions, imitations and adaptations; Rapper PSY himself has become an international name and styled as the ‘anti-hero’ of the glamour-driven K-pop scene. His fame has transcended the social sphere and permeated the political stratosphere with politicians such as Barrack Obama and David Cameron being among the many whom PSY has exchanged pleasantries with. Apart from breaking ground and creating social and media history in many ways, ‘Gangnam Style’ has even been purported by UN Secretary-General Ban Ki Moon to be a “force for world peace” – cultural barriers are demolished as the world dances. Underlying this sentiment is the video’s almost universal appeal that assumes a supracultural yet equally paradoxical translatability: Korea’s neoteric ‘K-Wave’ phenomenon is at once local yet global, and where the latter is predicated on the former quality. The paper’s concern is thus two-fold. It will consider the dromological aspects of this musical contagion as it exemplifies and performs quite literally Paul Virilio’s thesis that the modern condition is driven by speed yet arrested to a dictatorship of movement. While many theories have been put forward for this astounding pop peculiarity, this paper would also examine the intercultural currents that advocate such a global (pop) cultural response. Through an analysis of sonic qualities – digital techno-beat rhythms, synth-based musicality, cyclical lyrics, horse-galloping movements – and acoustic receptions, it will consider the simultaneous and dichotomous currents of glocalisation and globalisation as it relates to the ways in which sonic ‘hyper-links’ establish new concepts of global-cultural identities even as these seem to be interrogated in the borderless worlds of hyper-mediatised realities and cultural technologies.
Resumo:
Teachers’ communication of musical knowledge through physical gesture represents a valuable pedagogical field in need of investigation. This exploratory case study compares the gestural behaviour of three piano teachers while giving individual lessons to students who differed according to piano proficiency levels. The data was collected by video recordings of one-to-one piano lessons and gestures were categorized using two gesture classifications: the spontaneous co-verbal gesture classification (McNeill, 1992; 2005) and spontaneous co-musical gesture classification (Simones, Schroeder & Rodger, 2013). Poisson regression analysis and qualitative observation suggest a relationship between teachers’ didactic intentions and the types of gesture they produced while teaching, as shown by differences in gestural category frequency between teaching students of higher and lower levels of proficiency. Such reported agreement between teachers’ gestural approach in relation to student proficiency levels indicates a teachers’ gestural scaffolding approach whereby teachers adapted gestural communicative channels to suit students’ specific conceptual skill levels.
Resumo:
Physical modelling of musical instruments involves studying nonlinear interactions between parts of the instrument. These can pose several difficulties concerning the accuracy and stability of numerical algorithms. In particular, when the underlying forces are non-analytic functions of the phase-space variables, a stability proof can only be obtained in limited cases. An approach has been recently presented by the authors, leading to unconditionally stable simulations for lumped collision models. In that study, discretisation of Hamilton’s equations instead of the usual Newton’s equation of motion yields a numerical scheme that can be proven to be energy conserving. In this paper, the above approach is extended to collisions of distributed objects. Namely, the interaction of an ideal string with a flat barrier is considered. The problem is formulated within the Hamiltonian framework and subsequently discretised. The resulting nonlinearmatrix equation can be shown to possess a unique solution, that enables the update of the algorithm. Energy conservation and thus numerical stability follows in a way similar to the lumped collision model. The existence of an analytic description of this interaction allows the validation of the model’s accuracy. The proposed methodology can be used in sound synthesis applications involving musical instruments where collisions occur either in a confined (e.g. hammer-string interaction, mallet impact) or in a distributed region (e.g. string-bridge or reed-mouthpiece interaction).
Resumo:
Collisions are an innate part of the function of many musical instruments. Due to the nonlinear nature of contact forces, special care has to be taken in the construction of numerical schemes for simulation and sound synthesis. Finite difference schemes and other time-stepping algorithms used for musical instrument modelling purposes are normally arrived at by discretising a Newtonian description of the system. However because impact forces are non-analytic functions of the phase space variables, algorithm stability can rarely be established this way. This paper presents a systematic approach to deriving energy conserving schemes for frictionless impact modelling. The proposed numerical formulations follow from discretising Hamilton׳s equations of motion, generally leading to an implicit system of nonlinear equations that can be solved with Newton׳s method. The approach is first outlined for point mass collisions and then extended to distributed settings, such as vibrating strings and beams colliding with rigid obstacles. Stability and other relevant properties of the proposed approach are discussed and further demonstrated with simulation examples. The methodology is exemplified through a case study on tanpura string vibration, with the results confirming the main findings of previous studies on the role of the bridge in sound generation with this type of string instrument.
Resumo:
While the origins of consonance and dissonance in terms of acoustics, psychoacoustics and physiology have been debated for centuries, their plausible effects on movement synchronization have largely been ignored. The present study aims to address this by investigating whether, and if so how, consonant/dissonant pitch intervals affect the spatiotemporal properties of regular reciprocal aiming movements. We compared movements synchronized either to consonant or to dissonant sounds, and showed that they were differently influenced by the degree of consonance of the sound presented. Interestingly, the difference was present after the sound stimulus was removed. In this case, the performance measured after consonant sound exposure was found to be more stable and accurate, with a higher percentage of information/movement coupling (tau-coupling) and a higher degree of movement circularity when compared to performance measured after the exposure to dissonant sounds. We infer that the neural resonance representing consonant tones leads to finer perception/action coupling which in turn may help explain the prevailing preference for these types of tones.