53 resultados para Multi-criteria analysis
Resumo:
Medical students frequently have negative preconceptions of a career in Geriatric Medicine. In ta qualitative analysis of the free text from 789 response from Medical students in Scotland and Northern Ireland, we show that clinical attachment seffectively challenge negative student views and more positive statements about future careers in Geriatric Medicine emerged at the end of the attachment.
Resumo:
A method is described for the quantitative confirmation of 4,4'-dinitrocarbanilide (DNC), the marker residue for nicarbazin in chicken liver and eggs. The method is based on LC coupled to negative ion electrospray MS-MS of tissue extracts prepared by liquid-liquid extraction. The [M-H](-) ion at m/z 301 is monitored along with two transition ions at m/z 137 and 107 for DNC and the [M-H](-) ion at m/z 309 for the internal standard, d(8)-DNC. The method has been validated according to the new EU criteria for the analysis of veterinary drug residues at 100, 200 and 300 mug kg(-1) in liver and at 10, 30 and 100 mug kg(-1) in eggs. Difficulties concerning the application of the new analytical limits, namely the decision limit (CC) and the detection capability (CC) to the determination of DNC in both liver and eggs are discussed.
Resumo:
Multi-vehicle cooperative formation control problem is an important and typical topic of research on multi-agent system. This paper presents a formation stability conjecture to conceive a new methodology for solving the decentralised multi-vehicle formation control problem. It employs the “extension-decomposition-aggregation” scheme to transform the complex multi-agent control problem into a group of sub-problems which is able to be solved conveniently. Based on this methodology, it is proved that if all the individual augmented subsystems can be stabilised by using any approach, the overall formation system is not only asymptotically but also exponentially stable in the sense of Lyapunov within a neighbourhood of the desired formation. Simulation study on 6-DOF aerial vehicles (Aerosonde UAVs) has been performed to verify the achieved formation stability result. The proposed multi-vehicle formation control strategy can be conveniently extended to other cooperative control problems of multi-agent systems.
Resumo:
In this paper we make use of the 9-year old wave of the Growing Up in Ireland study to analyse multidimensional deprivation in Ireland. The Alkire and Foster adjusted head count ratio approach (AHCR; 2007, 2011a, 2011b) applied here constitutes a significant improvement on union and intersection approaches and allows for the decomposition of multidimensional poverty in terms of dimensions and sub-groups. The approach involves a censoring of data such that deprivations count only for those above the specified multidimensional threshold leading to a stronger set of interrelationships between deprivation dimensions. Our analysis shows that the composition of the adjusted head ratio is influenced by a range of socio-economic factors. For less-favoured socio-economic groups dimensions relating to material deprivation are disproportionately represented while for the more advantaged groups, those relating to behavioral and emotional issues and social interaction play a greater role. Notwithstanding such variation in composition, our analysis showed that the AHCR varied systematically across categories of household type, and the social class, education and age group of the primary care giver. Furthermore, these variables combined in a cumulative manner. The most systematic variation was in relation to the head count of those above the multidimensional threshold rather than intensity, conditional on being above that cut-off point. Without seeking to arbitrate on the relative value of composite indices versus disaggregated profiles, our analysis demonstrates that there is much to be gained from adopting an approach with clearly understood axiomatic properties. Doing so allows one to evaluate the consequences of the measurement strategy employed for the understanding of levels of multidimensional deprivation, the nature of such deprivation profiles and socio-economic risk patterns. Ultimately it permits an informed assessment of the strengths and weaknesses of the particular choices made.
Resumo:
In this article the multibody simulation software package MADYMO for analysing and optimizing occupant safety design was used to model crash tests for Normal Containment barriers in accordance with EN 1317. The verification process was carried out by simulating a TB31 and a TB32 crash test performed on vertical portable concrete barriers and by comparing the numerical results to those obtained experimentally. The same modelling approach was applied to both tests to evaluate the predictive capacity of the modelling at two different impact speeds. A sensitivity analysis of the vehicle stiffness was also carried out. The capacity to predict all of the principal EN1317 criteria was assessed for the first time: the acceleration severity index, the theoretical head impact velocity, the barrier working width and the vehicle exit box. Results showed a maximum error of 6% for the acceleration severity index and 21% for theoretical head impact velocity for the numerical simulation in comparison to the recorded data. The exit box position was predicted with a maximum error of 4°. For the working width, a large percentage difference was observed for test TB31 due to the small absolute value of the barrier deflection but the results were well within the limit value from the standard for both tests. The sensitivity analysis showed the robustness of the modelling with respect to contact stiffness increase of ±20% and ±40%. This is the first multibody model of portable concrete barriers that can reproduce not only the acceleration severity index but all the test criteria of EN 1317 and is therefore a valuable tool for new product development and for injury biomechanics research.
Resumo:
In this paper, the overall formation stability of unmanned multi-vehicle is mathematically presented under interconnection topologies. A novel definition of formation error is first given and followed by the proposed formation stability hypothesis. Based on this hypothesis, a unique extension-decomposition-aggregation scheme is then employed to support the stability analysis for the overall multi-vehicle formation under a mesh topology. It is proved that the overall formation control system consisting of N number of nonlinear vehicles is not only asymptotically, but also exponentially stable in the sense of Lyapunov within a neighbourhood of the desired formation. This technique is shown to be applicable for a mesh topology but is equally applicable for other topologies. Simulation study of the formation manoeuvre of multiple Aerosonde UAVs, in 3D-space, is finally carried out verifying the achieved formation stability result.
Resumo:
BACKGROUND AND OBJECTIVE: Human research ethics committees provide essential review of research projects to ensure the ethical conduct of human research. Several recent reports have highlighted a complex process for successful application for human research ethics committee approval, particularly for multi-centre studies. Limited resources are available for the execution of human clinical research in Australia and around the world.
METHODS: This report overviews the process of ethics approval for a National Health and Medical Research Council-funded multi-centre study in Australia, focussing on the time and resource implications of such applications in 2007 and 2008.
RESULTS: Applications were submitted to 16 hospital and two university human research ethics committees. The total time to gain final approval from each committee ranged between 13 and 77 days (median = 46 days); the entire process took 16 months to complete and the research officer's time was estimated to cost $A34 143.
CONCLUSIONS: Obstacles to timely human research ethics committee approval are reviewed, including recent, planned and potential initiatives that could improve the ethics approval of multi-centre research.