75 resultados para Morphological characteristic
Resumo:
There is a need for reproducible and effective models of pediatric bronchial epithelium to study disease states such as asthma. We aimed to develop, characterize, and differentiate an effective, an efficient, and a reliable three-dimensional model of pediatric bronchial epithelium to test the hypothesis that children with asthma differ in their epithelial morphologic phenotype when compared with nonasthmatic children. Primary cell cultures from both asthmatic and nonasthmatic children were grown and differentiated at the air-liquid interface for 28 d. Tight junction formation, MUC5AC secretion, IL-8, IL-6, prostaglandin E2 production, and the percentage of goblet and ciliated cells in culture were assessed. Well-differentiated, multilayered, columnar epithelium containing both ciliated and goblet cells from asthmatic and nonasthmatic subjects were generated. All cultures demonstrated tight junction formation at the apical surface and exhibited mucus production and secretion. Asthmatic and nonasthmatic cultures secreted similar quantities of IL-8, IL-6, and prostaglandin E2. Cultures developed from asthmatic children contained considerably more goblet cells and fewer ciliated cells compared with those from nonasthmatic children. A well-differentiated model of pediatric epithelium has been developed that will be useful for more in vivo like study of the mechanisms at play during asthma.
Resumo:
PURPOSE: We investigated the 3-dimensional morphological arrangement of KIT positive interstitial cells of Cajal in the human bladder and explored their structural interactions with neighboring cells.MATERIALS AND METHODS: Human bladder biopsy samples were prepared for immunohistochemistry/confocal or transmission electron microscopy.RESULTS: Whole mount, flat sheet preparations labeled with anti-KIT (Merck, Darmstadt, Germany) contained several immunopositive interstitial cell of Cajal populations. A network of stellate interstitial cells of Cajal in the lamina propria made structural connections with a cholinergic nerve plexus. Vimentin positive cells of several morphologies were present in the lamina propria, presumably including fibroblasts, interstitial cells of Cajal and other cells of mesenchymal origin. Microvessels were abundant in this region and branched, elongated KIT positive interstitial cells of Cajal were found discretely along the vessel axis with each perivascular interstitial cell of Cajal associated with at least 6 vascular smooth muscle cells. Detrusor interstitial cells of Cajal were spindle-shaped, branched cells tracking the smooth muscle bundles, closely associated with smooth muscle cells and vesicular acetylcholine transferase nerves. Rounded, nonbranched KIT positive cells were more numerous in the lamina propria than in the detrusor and were immunopositive for anti-mast cell tryptase. Transmission electron microscopy revealed cells with the ultrastructural characteristics of interstitial cells of Cajal throughout the human bladder wall.CONCLUSIONS: The human bladder contains a network of KIT positive interstitial cells of Cajal in the lamina propria, which make frequent connections with a cholinergic nerve plexus. Novel perivascular interstitial cells of Cajal were discovered close to vascular smooth muscle cells, suggesting interstitial cells of Cajal-vascular coupling in the bladder. KIT positive detrusor interstitial cells of Cajal tracked smooth muscle bundles and were associated with nerves, perhaps showing a functional tri-unit controlling bladder contractility.
Resumo:
Chitons are often referred to as “living fossils” in part because they are proposed as one of the earliest-diverging groups of living molluscs, but also because the gross morphology of the polyplacophoran shell has been conserved for hundreds of millions of years. As such, the analysis of evolution and radiation within polyplacophorans is of considerable interest not only for resolving the shape of pan-molluscan phylogeny but also as model organisms for the study of character evolution. This study presents a new, rigorous cladistic analysis of the morphological characters used in taxonomic descriptions for chitons in the living suborder Lepidopleurina Thiele, 1910 (the earliest-derived living group of chitons). Shell-based characters alone entirely fail to recover any recognized subdivisions within the group, which may raise serious questions about the application of fossil data (from isolated shell valves). New analysis including characters from girdle armature and gill arrangements recovers some genera within the group but also points to the lack of monophyly within the main genus Leptochiton Gray, 1847. Additional characters from molecular data and soft anatomy, used in combination, are clearly needed to resolve questions of chiton relationships. However, the data sets currently available already provide interesting insights into the analytical power of traditional morphology as well as some knowledge about the early evolution and radiation of this group.
Resumo:
Immersed shannies (Blennius pholis) showed peak locomotory activity coincident with daylight high tides. Emersion caused cessation of breathing and bradycardia though Q02 was little affected. Q02 fell, however, when the abdomen was enclosed in an impermeable sheath to block cutaneous respiration. Gulping of air into the extensively vascular oesophagus probably also acts as a means of aerial respiration. Reimmersion of fish caused a transient bradycardia followed by a tachycardia and a fall in Q02 followed subsequently by a rise. The results are discussed in relation to the behavioural, circulatory, respiratory and morphological adaptations of the shanny to the intertidal habitat.