77 resultados para Molecular properties


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near-infrared-emitting rare-earth chelates based on 8-hydroxyquinoline have appeared frequently in recent literature, because they are promising candidates for active components in near-infrared-luminescent optical devices, such as optical amplifiers, organic light-emitting diodes, .... Unfortunately, the absence of a full structural investigation of these rare-earth quinolinates is hampering the further development of rare-earth quinolinate based materials, because the luminescence output cannot be related to the structural properties. After an elaborate structural elucidation of the rare-earth quinolinate chemistry we can conclude that basically three types of structures can be formed, depending on the reaction conditions: tris complexes, corresponding to a 1:3 metal-to-ligand ratio, tetrakis complexes, corresponding to a 1:4 metal-to-ligand ratio, and trimeric complexes, with a 3:8 metal-to-ligand ratio. The intensity of the emitted near-infrared luminescence of the erbium(Ill) complexes is highest for the tetrakis complexes of the dihalogenated 8-hydroxyquinolinates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The term endothelial progenitor cells (EPCs) is currently used to refer to cell populations which are quite dissimilar in terms of biological properties. This study provides a detailed molecular fingerprint for two EPC subtypes: early EPCs (eEPCs) and outgrowth endothelial cells (OECs). METHODS: Human blood-derived eEPCs and OECs were characterised by using genome-wide transcriptional profiling, 2D protein electrophoresis, and electron microscopy. Comparative analysis at the transcript and protein level included monocytes and mature endothelial cells as reference cell types. RESULTS: Our data show that eEPCs and OECs have strikingly different gene expression signatures. Many highly expressed transcripts in eEPCs are haematopoietic specific (RUNX1, WAS, LYN) with links to immunity and inflammation (TLRs, CD14, HLAs), whereas many transcripts involved in vascular development and angiogenesis-related signalling pathways (Tie2, eNOS, Ephrins) are highly expressed in OECs. Comparative analysis with monocytes and mature endothelial cells clusters eEPCs with monocytes, while OECs segment with endothelial cells. Similarly, proteomic analysis revealed that 90% of spots identified by 2-D gel analysis are common between OECs and endothelial cells while eEPCs share 77% with monocytes. In line with the expression pattern of caveolins and cadherins identified by microarray analysis, ultrastructural evaluation highlighted the presence of caveolae and adherens junctions only in OECs. CONCLUSIONS: This study provides evidence that eEPCs are haematopoietic cells with a molecular phenotype linked to monocytes; whereas OECs exhibit commitment to the endothelial lineage. These findings indicate that OECs might be an attractive cell candidate for inducing therapeutic angiogenesis, while eEPC should be used with caution because of their monocytic nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic liquids (ILs) having either cations or anions derived from naturally occurring amino acids have been synthesized and characterized as amino acid-based ionic liquids (AAILs) In this work, the experimental measurements of the temperature dependence or density. viscosity, heat capacity, and thermal conductivity of several AAILs, namely, tributylmethylammonium serinate ([N-444][Ser], tributylmethylammonium taurmate ([N-444][Tau]) tributylmethylammonium lysinate a [N-444][ Lys]), tributylmethylammonium threonate ([N-444][Thr]), tetrabutylphosphonium serinate ([P-4444][Ser]), tetrabutylphosphonium taurmate ([P-4444][Tau]), tetrabutylphosphonium lysinate ([P-4444][Lys]), tetrabutylphosphonium threonate P-4444 Thr tetrabutylphosphonium prolinate P-4444 ((Pro(), tetrabutylphosphonium valinate ([P-4444][Val]), and tetrabutylphosphonium cysteinate ([P-4444][Cys]), are presented The influence of cations and anions on studied properties is discussed. On the basis of experimental data. the QSPR (quantitative structure property relationship) correlations and group contribution methods for thermophysical properties of AAILs have been developed, which form the basis for the development of the computer-aided molecular design (CAMD) of AAILs It has also been demonstrated that that the predictive data obtained by con elation methods ale in good agreement with the experimental data The correlations developed, herein. can thus be used to evaluate the studied thermophysical properties of AAILs for use in process design or in the CAMD of new AAILs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study some of the interfacial properties of PtSi/Si diodes, Schottky structures were fabricated on (100) crystalline silicon substrates by conventional thermal evaporation of Pt on Si followed by annealing at different temperatures (from 400 degrees C to 700 degrees C) to form PtSi. The PtSi/n-Si diodes, all yielded Schottky barrier (SB) heights that are remarkably temperature dependent. The temperature range (20-290 K) over which the I-V characteristics were measured in the present study is broader with a much lower limit (20 K), than what is usually reported in literature. These variations in the barrier height are adequately interpreted by introducing spatial inhomogeneity into the barrier potential with a Gaussian distribution having a mean barrier of 0.76 eV and a standard deviation of 30 meV. Multi-frequency capacitance-voltage measurements suggest that the barrier is primarily controlled by the properties of the silicide-silicon interface. The forward C-V characteristics, in particular, show small peaks at low frequencies that can be ascribed to interface states rather than to a series resistance effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obestatin is a peptide produced in the oxyntic mucosa of the stomach and co-localizes with ghrelin on the periphery of pancreatic islets. Several studies demonstrate that obestatin reduces food and water intake, decreases body weight gain, inhibits gastrointestinal motility, and modulates glucose-induced insulin secretion. In this study we evaluated the acute metabolic effects of human obestatin {1-23} and fragment peptides {1-10} or {11-23} in high-fat fed mice, and then investigated their solution structure by NMR spectroscopy and molecular modelling. Obestatins {1-23} and {11-23} significantly reduced food intake (86% and 90% respectively) and lowered glucose responses to feeding, whilst leaving insulin responses unchanged. No metabolic changes could be detected following the administration of obestatin (1-10). In aqueous solution none of the obestatin peptides possessed secondary structural features. However, in a 2,2,2-trifluoroethanol (TFE-d(3))-H2O solvent mixture, the structure of obestatin {1-23} was characterized by an a-helix followed by a single turn helix conformation between residues Pro(4) and Gln(15) and His(19) and Ala(22) respectively. Obestatin {1-10} showed no structural components whereas {11-23} contained an a-helix between residues Val(14) and Ser(20) in a mixed solvent. These studies are the first to elucidate the structure of human obestatin and provide clear evidence that the observed a-helical structures are critical for in vivo activity. Future structure/function studies may facilitate the design of novel therapeutic agents based on the obestatin peptide structure. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an analysis of entropy-based molecular descriptors. Specifically, we use real chemical structures, as well as synthetic isomeric structures, and investigate properties of and among descriptors with respect to the used data set by a statistical analysis. Our numerical results provide evidence that synthetic chemical structures are notably different to real chemical structures and, hence, should not be used to investigate molecular descriptors. Instead, an analysis based on real chemical structures is favorable. Further, we find strong hints that molecular descriptors can be partitioned into distinct classes capturing complementary information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Hoxa9 and Meis1 genes represent important oncogenic collaborators activated in a significant proportion of human leukemias with genetic alterations in the MLL gene. In this study, we show that the transforming property of Meis1 is modulated by 3 conserved domains, namely the Pbx interaction motif (PIM), the homeodomain, and the C-terminal region recently described to possess transactivating properties. Meis1 and Pbx1 interaction domain-swapping mutants are dysfunctional separately, but restore the full oncogenic activity of Meis1 when cotransduced in primary cells engineered to overexpress Hoxa9, thus implying a modular nature for PIM in Meis1-accelerated transformation. Moreover, we show that the transactivating domain of VP16 can restore, and even enhance, the oncogenic potential of the Meis1 mutant lacking the C-terminal 49 amino acids. In contrast to Meis1, the fusion VP16-Meis1 is spontaneously oncogenic, and all leukemias harbor genetic activation of endogenous Hoxa9 and/or Hoxa7, suggesting that Hoxa gene activation represents a key event required for the oncogenic activity of VP16-Meis1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Guanine-rich DNA repeat sequences located at the terminal ends of chromosomal DNA can fold in a sequence-dependent manner into G-quadruplex structures, notably the terminal 150–200 nucleotides at the 3' end, which occur as a single-stranded DNA overhang. The crystal structures of quadruplexes with two and four human telomeric repeats show an all-parallel-stranded topology that is readily capable of forming extended stacks of such quadruplex structures, with external TTA loops positioned to potentially interact with other macromolecules. This study reports on possible arrangements for these quadruplex dimers and tetramers, which can be formed from 8 or 16 telomeric DNA repeats, and on a methodology for modeling their interactions with small molecules. A series of computational methods including molecular dynamics, free energy calculations, and principal components analysis have been used to characterize the properties of these higher-order G-quadruplex dimers and tetramers with parallel-stranded topology. The results confirm the stability of the central G-tetrads, the individual quadruplexes, and the resulting multimers. Principal components analysis has been carried out to highlight the dominant motions in these G-quadruplex dimer and multimer structures. The TTA loop is the most flexible part of the model and the overall multimer quadruplex becoming more stable with the addition of further G-tetrads. The addition of a ligand to the model confirms the hypothesis that flat planar chromophores stabilize G-quadruplex structures by making them less flexible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a study on the effect of the alkyl chain length of the imidazolium ring in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, [C1CnIm][NTf2] (n = 2 to 10), on the mixing properties of (ionic liquid + alcohol) mixtures (enthalpy and volume). We have measured small excess molar volumes with highly asymmetric curves as a function of mole fraction composition (S-shape) with more negative values in the alcohol-rich regions. The excess molar volumes increase with the increase of the alkyl-chain length of the imidazolium cation of the ionic liquid. The values of the partial molar excess enthalpy and the enthalpy of mixing are positive and, for the case of methanol, do not vary monotonously with the length of the alkyl side-chain of the cation on the ionic liquid – increasing from n = 2 to 6 and then decreasing from n = 8. This non-monotonous variation is explained by a more favourable interaction of methanol with the cation head group of the ionic liquid for alkyl chains longer than eight carbon atoms. It is also observed that the mixing is less favourable for the smaller alcohols, the enthalpy of mixing decreasing to less positive values as the alkyl chain of the alcohol increases. Based on the data from this work and on the knowledge of the vapour pressure of {[C1CnIm][NTf2] + alcohol} binary mixtures at T = 298 K reported in the literature, the excess Gibbs free energy, excess enthalpy and excess entropy could be then calculated and it was observed that these mixtures behave like the ones constituted by a non-associating and a non-polar component, with its solution behaviour being determined by the enthalpy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the dissolution properties of celecoxib (CX) solid dispersions manufactured from Eudragit 4155F and polyvinylpyrrolidone (PVP) were evaluated. Hot-melt extrusion (HME) technology was used to prepare amorphous solid dispersions of drug/polymer binary systems at different mass ratios. The drug concentrations achieved from the dissolution of PVP and Eudragit 4155F solid dispersions in phosphate buffer, pH 7.4 (PBS 7.4) were significantly greater than the equilibrium solubility of CX (1.58 µg/mL). The degree of supersaturation increased significantly as the polymer concentration within the solid dispersion increased. The maximum drug concentration achieved by PVP solid dispersions did not significantly exceed the apparent solubility of amorphous CX. The predominant mechanism for achieving supersaturated CX concentrations in PBS 7.4 was attributed to stabilization of amorphous CX during dissolution. Conversely, Eudragit 4155F solid dispersions showed significantly greater supersaturated drug solutions particularly at high polymer concentrations. For example, at a drug/polymer ratio of 1:9, a concentration of 100 µg/mL was achieved after 60 min that was stable (no evidence of drug recrystallization) for up to 72 h. This clearly identifies the potential of Eudragit 4155F to act as a solubilizing agent for CX. These findings were in good agreement with the results from solubility performed using PBS 7.4 in which Eudragit 4155F had been predissolved. In these tests, Eudragit 4155F significantly increased the equilibrium solubility of CX. Solution 1H NMR spectra were used to identify drug/polymer interactions. Deshielding of CX aromatic protons (H-1a and H-1b) containing the sulfonamide group occurred as a result of dissolution of Eudragit 4155F solid dispersions, whereas deshielding of H-1a protons and shielding of H-1b protons occurred as a result of the dissolution of PVP solid dispersions. In principle, it is reasonable to suggest that the different drug/polymer interactions observed give rise to the variation in dissolution observed for the two polymer/drug systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two semianalytical relations [Nature, 1996, 381, 137 and Phys. Rev. Lett. 2001, 87, 245901] predicting dynamical coefficients of simple liquids on the basis of structural properties have been tested by extensive molecular dynamics simulations for an idealized 2:1 model molten salt. In agreement with previous simulation studies, our results support the validity of the relation expressing the self-diffusion coefficient as a Function of the radial distribution functions for all thermodynamic conditions such that the system is in the ionic (ie., fully dissociated) liquid state. Deviations are apparent for high-density samples in the amorphous state and in the low-density, low-temperature range, when ions condense into AB(2) molecules. A similar relation predicting the ionic conductivity is only partially validated by our data. The simulation results, covering 210 distinct thermodynamic states, represent an extended database to tune and validate semianalytical theories of dynamical properties and provide a baseline for the interpretation of properties of more complex systems such as the room-temperature ionic liquids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supported ionic liquid membranes (SILMs) has the potential to be a new technological platform for gas/organic vapour separation because of the unique non-volatile nature and discriminating gas dissolution properties of room temperature ionic liquids (ILs). This work starts with an examination of gas dissolution and transport properties in bulk imidazulium cation based ionic liquids [Cnmim][NTf2] (n = 2.4, 6, 8.10) from simple gas H2, N2, to polar CO2, and C2H6, leading to a further analysis of how gas dissolution and diffusion are influenced by molecular specific gas-SILMs interactions, reflected by differences in gas dissolution enthalpy and entropy. These effects were elucidated again during gas permeation studies by examining how changes in these properties and molecular specific interactions work together to cause deviations from conventional solution–diffusion theory and their impact on some remarkably contrasting gas perm-selectivity performance. The experimental perm-selectivity for all tested gases showed varied and contrasting deviation from the solution–diffusion, depending on specific gas-IL combinations. It transpires permeation for simpler non-polar gases (H2, N2) is diffusion controlled, but strong molecular specific gas-ILs interactions led to a different permeation and selectivity performance for C2H6 and CO2. With exothermic dissolution enthalpy and large order disruptive entropy, C2H6 displayed the fastest permeation rate at increased gas phase pressure in spite of its smallest diffusivity among the tested gases. The C2H6 gas molecules “peg” on the side alkyl chain on the imidazulium cation at low concentration, and are well dispersed in the ionic liquids phase at high concentration. On the other hand strong CO2-ILs affinity resulted in a more prolonged “residence time” for the gas molecule, typified by reversed CO2/N2 selectivity and slowest CO2 transport despite CO2 possess the highest solubility and comparable diffusivity in the ionic liquids. The unique transport and dissolution behaviour of CO2 are further exploited by examining the residing state of CO2 molecules in the ionic liquid phase, which leads to a hypothesis of a condensing and holding capacity of ILs towards CO2, which provide an explanation to slower CO2 transport through the SILMs. The pressure related exponential increase in permeations rate is also analysed which suggests a typical concentration dependent diffusion rate at high gas concentration under increased gas feed pressure. Finally the strong influence of discriminating and molecular specific gas-ILs interactions on gas perm-selectivity performance points to future specific design of ionic liquids for targeted gas separations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composites of multi-walled carbon nanotubes (MWCNT) of varied functionality (unfunctionalised and carboxyl and amine functionalised) with polymethyl methacrylate (PMMA) were prepared for use as a bone cement. The MWCNT loadings ranged from 0.1 to 1.0 wt.%. The fatigue properties of these MWCNT–PMMA bone cements were characterised at MWCNT loading levels of 0.1 and 0.25 wt.% with the type and wt.% loading of MWCNT used having a strong influence on the number of cycles to failure. The morphology and degree of dispersion of the MWCNT in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in the fatigue properties were attributed to the MWCNT arresting/retarding crack propagation through the cement through a bridging effect and hindering crack propagation. MWCNT agglomerates were evident within the cement microstructure and the degree of agglomeration was dependent on the level of loading and functionality of the MWCNT. The biocompatibility of the MWCNT–PMMA cements at MWCNT loading levels upto 1.0 wt.% was determined by means of established biological cell culture assays using MG-63 cells. Cell attachment after 4 h was determined using the crystal violet staining assay. Cell viability was determined over 7 days in vitro using the standard colorimetric MTT assay. Confocal scanning laser microscopy and SEM analysis was also used to assess cell morphology on the various substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic conductivities of twelve protic ionic liquids (PILs) and their mixtures with water over the whole composition range are reported at 298.15 K and atmospheric pressure. The selected PILs are the pyrrolidinium-based PILs containing nitrate, acetate or formate anions; the formate-based PILs containing diisopropylethylammonium, amilaminium, quinolinium, lutidinium or collidinium cations; and the pyrrolidinium alkylcarboxylates, [Pyrr][CnH2n+1COO] with n = 5–8. This study was performed in order to investigate the influence of molecular structures of the ions on the ionic conductivities in aqueous solutions. The ionic conductivities of the aqueous solutions are 2–30 times higher than the conductivities of pure PILs. The maximum in conductivity varies from ww=0.41???to???0.74 and is related to the nature of cations and anions. The molar conductance and the molar conductance at infinite dilution for (PIL + water) solutions are then determined. Self-diffusion coefficients of the twelve protic ionic liquids in water at infinite dilution and at 298.15 K are calculated by using the Nernst–Haskell, the original and the modified Wilke–Chang equations. These calculations show that similar values are obtained using the modified Wilke–Chang and the Nernst–Haskell equations. Finally, the effective hydrodynamic (or Stokes) radius of the PILs was determined by using the Stokes–Einstein equation. A linear relationship was established in order to predict this radius as a function of the anion alkyl chain length in the case of the pyrrolidinium alkylcarboxylates PILs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nine H II regions of the LMC were mapped in (CO)-C-13(1-0) and three in (CO)-C-12(1-0) to study the physical properties of the interstellar medium in the Magellanic Clouds. For N113 the molecular core is found to have a peak position which differs from that of the associated H II region by 20 ''. Toward this molecular core the (CO)-C-12 and (CO)-C-13 peak T-MB line temperatures of 7.3 K and 1.2 K are the highest so far found in the Magellanic Clouds. The molecular concentrations associated with N113, N44BC, N159HW, and N214DE in the LMC and LIRS 36 in the SMC were investigated in a variety of molecular species to study the chemical properties of the interstellar medium. I(HCO+)/I(HCN) and I(HCN)/I(HNC) intensity ratios as well as lower limits to the I((CO)-C-13)/I((CO)-O-18) ratio were derived for the rotational 1-0 transitions. Generally, HCO+ is stronger than HCN, and HCN is stronger than HNC. The high relative HCO+ intensities are consistent with a high ionization flux from supernovae remnants and young stars, possibly coupled with a large extent of the HCO+ emission region. The bulk of the HCN arises from relatively compact dense cloud cores. Warm or shocked gas enhances HCN relative to HNC. From chemical model calculations it is predicted that I(HCN)/I(HNC) close to one should be obtained with higher angular resolution (less than or similar to 30 '') toward the cloud cores. Comparing virial masses with those obtained from the integrated CO intensity provides an H-2 mass-to-CO luminosity conversion factor of 1.8 x 10(20) mol cm(-2) (K km s(-1))(-1) for N113 and 2.4 x 10(20) mol cm(-2) (K km s(-1))(-1) for N44BC. This is consistent with values derived for the Galactic disk.