119 resultados para Mixing property
Resumo:
This paper reports the results of models of dark cloud chemistry incorporating a depth dependent density distribution with diffusive mixing and adsorption onto grains. The model is based on the approach taken by Xie et al. (1995), with the addition of grain accretion effects. Without diffusion, the central regions of the cloud freeze out in less than 10(7) years. Freeze-out time is dependent on density, so the diffuse outer region of the cloud remains abundant in gas for about an order of magnitude longer. We find that fairly small amounts of diffusive mixing can delay freeze-out at the centre of the model cloud for a time up to an order of magnitude greater than without diffusion, due to material diffusing inward from the edges of the cloud. The gas-phase lifetime of the cloud core can thus be increased by up to an order of magnitude or more by this process. We have run three different grain models with various diffusion coefficients to investigate the effects of changing the sticking parameters.
Resumo:
The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point = 30 degrees C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation adopts a folded conformation, whereas the bistriflimide anion exhibits a transoid conformation. The choline cation and the bistriflimide anion are held together by hydrogen bonds between the hydroxyl proton and a sulfonyl oxygen atom. This hydrogen bonding is of importance for the temperature-dependent solubility proper-ties of the ionic liquid. Choline bistriflimide is not miscible with water at room temperature, but forms one phase with water at temperatures above 72 degrees C (equals upper critical solution temperature). H-1 NMR studies show that the hydrogen bonds between the choline cation and the bistriflimide anion are substantially weakened above this temperature. The thermophysical properties of water-choline bistriflimide binary mixtures were furthermore studied by a photopyroelectric technique and by adiabatic scanning calorimetry (ASC). By photothermal analysis, besides highly accurate values for the thermal conductivity and effusivity of choline bistriflimide at 30 degrees C, the detailed temperature dependence of both the thermal conductivity and effusivity of the upper and lower part of a critical water-choline bistriflimide mixture in the neighborhood of the mixing-demixing phase transition could be determined with high resolution and accuracy. Together with high resolution ASC data for the heat capacity, experimental values were obtained for the critical exponents alpha and beta, and for the critical amplitude ratio G(+)/G(-). These three values were found to be consistent with theoretical expectations for a three dimensional Ising-type of critical behavior of binary liquid mixtures.
Resumo:
(2006) Vol. 35 No. 8 317
Resumo:
The mixing of poly(methyl methacrylate) (PMMA) bone cement has been studied to develop methods for preparing a consistently high quality cement. A novel droplet test experimental procedure was developed that characterised the wetting characteristics involved in bone cement mixing. Using this technique it was established that increased wetting occurred by mixing bone cement at a lower temperature (-28 degreesC) than normal mixing at room temperature.
Resumo:
The making private of hitherto public goods is a central tenet of neoliberalism. From land in Africa, Asia, and South America to the assertion of property rights over genes and cells by corporations, the process(es) of making private property matters more than ever. And yet, despite this importance, we know remarkably little about the spatial plays through which things become private property. In this paper I seek to address this imbalance by focusing upon the formative context of 18th- and early-19th-century England. The specific lens is wood, that most critical of all ‘natural’ things other than land in the transition to market-driven economies. It is shown that the interplay between custom, law, and local practices rendered stable and aspatial definitions of property impossible. Whilst law was the key technology through which property was mediated, the cadence of particular places gave these mediations distinctive forms. I conclude that not only must we take property seriously, but we must also take the conditions and contexts of its making seriously too.
Resumo:
Semi-solid forming processes such as thermoforming and injection blow moulding are used to make much of today’s packaging. As for most packaging there is a drive to reduce product weight and improve properties such as barrier performance. Polymer nanocomposites offer the possibility of increased modulus
(and hence potential product light weighting) as well as improved barrier properties and are the subject of much research attention. In this particular study, polypropylene–clay nanocomposite sheets produced via biaxial deformation are investigated and the structure of the nanocomposites is quantitatively determined in order to gain a better understanding of the influence of the composite structure on mechanical properties. Compression moulded sheets of polypropylene and polypropylene/Cloisite 15A nanocomposite (5 wt.%) were biaxially stretched to different stretching ratios, and then the structure of
the nanocomposite was examined using XRD and TEM techniques. Different stretching ratios produced different degrees of exfoliation and orientation of the clay tactoids. The sheet properties were then investigated using DSC, DMTA, and tensile tests .It was found that regardless of the degree of exfoliation or
orientation, the addition of clay has no effect on percentage crystallinity or melting temperature, but it has an effect on the crystallization temperature and on the crystal size distribution. DMTA and tensile tests show that both the degree of exfoliation and the degree of orientation positively correlate with the dynamic mechanical properties and the tensile properties of the sheet.
Resumo:
This study investigated methyl methacrylate – polymethyl methacrylate powder bed interactions through droplet analyses, using model fluids and commercially available bone cement. The effects of storage temperature of liquid monomer and powder packing configuration on drop penetration time were investigated. Methyl methacrylate showed much more rapid imbibition than caprolactone due to decrease in both contact angle and fluid viscosity. Drop penetration of caprolactone through polymethyl methacrylate increased with decrease in bed macro-voids and increase in bulk density as predicted by the modified constant drawing area penetration model and confirmed by drop penetration images. Linear relationships were found between droplet mass and drawing area with imbibition time. Further experiments showed gravimetric analysis of the polymerised methyl methacrylate – polymethyl methacrylate matrix under various storage temperatures correlated with Reynolds number and Washburn analyses. These observations have direct implications for the design of mixing and delivery systems for acrylic bone cements used in orthopaedic surgery.