37 resultados para Mixed-model
Resumo:
A La0.6Sr0.4Co0.2F0.8O3 mixed ionic electronic conducting (MIEC) membrane was used in a dual chamber reactor for the promotion of the catalytic activity of a platinum catalyst for ethylene oxidation. By controlling the oxygen chemical potential difference across the membrane, a driving force for oxygen ions to migrate across the membrane and backspillover onto the catalyst surface is established. The reaction is then promoted by the formation of a double layer of oxide anions on the catalyst surface. Thelectronic conductivity of the membrane material eliminates the need for an external circuit to pump the promoting oxide ion species through the membrane and onto the catalyst surface. This renders this "wireless" system simpler and more amenable for large-scale practical application. Preliminary experiments show that the reaction rate of ethylene oxidation can indeed be promoted by almost one order of magnitude upon exposure to an oxygen atmosphere on the sweep side of the membrane reactor, and thus inducing an oxygen chemical potential difference across the membrane, as compared to the rate under an inert sweep gas. Moreover, the rate does not return to its initial unpromoted value upon cessation of the oxygen flow on the sweep side, but remains permanently promoted. A number of comparisons are drawn between the classical electrochemical promotion that utilises an external circuit and the "wireless" system that utilises chemical potential differences. In addition a 'surface oxygen capture' model is proposed to explain the permanent promotion of the catalyst activity. © 2007 Springer Science+Business Media, LLC.
Resumo:
Purpose: There is wide variability in how attending physician roles on teaching teams, including patient care and trainee learning, are enacted. This study sought to better understand variability by considering how different attendings configured and rationalized direct patient care, trainee oversight, and teaching activities.
Method: Constructivist grounded theory guided iterative data collection and analyses. Data were interviews with 24 attending physicians from two academic centers in Ontario, Canada, in 2012. During interviews, participants heard a hypothetical presentation and reflected on it as though it were presented to their team during a typical admission case review.
Results: Four supervisory styles were identified: direct care, empowerment, mixed practice, and minimalist. Driven by concerns for patient safety, direct care involves delegating minimal patient care responsibility to trainees. Focused on supporting trainees’ progressive independence, empowerment uses teaching and oversight strategies to ensure quality of care. In mixed practice, patient care is privileged over teaching and is adjusted on the basis of trainee competence and contextual features such as patient volume. Minimalist style involves a high degree of trust in senior residents, delegating most patient care, and teaching to them. Attendings rarely discussed their styles with the team.
Conclusions: The model adds to the literature on variability in supervisory practice, showing that the four styles reflect different ways of responding to tensions in the role and context. This model could be refined through observational research exploring the impact of context on style development and enactment. Making supervisory styles explicit could support improvement of team competence.
Resumo:
This paper reports on an innovative Continuing Professional Development (CPD) programme which addressed transition issues and issues with conducting outdoor work and attitudes towards science through ‘Shared Learning' days between elementary and middle school transition classes. Teachers supported each other to overcome issues with conducting outdoor work and contributed their expertise from their educational stage. The project utilised a blended CPD approach of workshops, coteaching and in-class support and was based upon a wealth earlier successful CPD programmes to result in a sound theoretical framework.
The outcomes were measured using a thorough mixed-methods approach. This paper will report on the achieved outcomes with effective outdoor learning as the vehicle to overcome identified issues and key challenges for policy development.
Resumo:
BACKGROUND: Considering the high rates of pain as well as its under-management in long-term care (LTC) settings, research is needed to explore innovations in pain management that take into account limited resource realities. It has been suggested that nurse practitioners, working within an inter-professional model, could potentially address the under-management of pain in LTC.
OBJECTIVES: This study evaluated the effectiveness of implementing a nurse practitioner-led, inter-professional pain management team in LTC in improving (a) pain-related resident outcomes; (b) clinical practice behaviours (e.g., documentation of pain assessments, use of non-pharmacological and pharmacological interventions); and, (c) quality of pain medication prescribing practices.
METHODS: A mixed method design was used to evaluate a nurse practitioner-led pain management team, including both a quantitative and qualitative component. Using a controlled before-after study, six LTC homes were allocated to one of three groups: 1) a nurse practitioner-led pain team (full intervention); 2) nurse practitioner but no pain management team (partial intervention); or, 3) no nurse practitioner, no pain management team (control group). In total, 345 LTC residents were recruited to participate in the study; 139 residents for the full intervention group, 108 for the partial intervention group, and 98 residents for the control group. Data was collected in Canada from 2010 to 2012.
RESULTS: Implementing a nurse practitioner-led pain team in LTC significantly reduced residents' pain and improved functional status compared to usual care without access to a nurse practitioner. Positive changes in clinical practice behaviours (e.g., assessing pain, developing care plans related to pain management, documenting effectiveness of pain interventions) occurred over the intervention period for both the nurse practitioner-led pain team and nurse practitioner-only groups; these changes did not occur to the same extent, if at all, in the control group. Qualitative analysis highlighted the perceived benefits of LTC staff about having access to a nurse practitioner and benefits of the pain team, along with barriers to managing pain in LTC.
CONCLUSIONS: The findings from this study showed that implementing a nurse practitioner-led pain team can significantly improve resident pain and functional status as well as clinical practice behaviours of LTC staff. LTC homes should employ a nurse practitioner, ideally located onsite as opposed to an offsite consultative role, to enhance inter-professional collaboration and facilitate more consistent and timely access to pain management.
Resumo:
A new variant of the Element-Free Galerkin (EFG) method, that combines the diffraction method, to characterize the crack tip solution, and the Heaviside enrichment function for representing discontinuity due to a crack, has been used to model crack propagation through non-homogenous materials. In the case of interface crack propagation, the kink angle is predicted by applying the maximum tangential principal stress (MTPS) criterion in conjunction with consideration of the energy release rate (ERR). The MTPS criterion is applied to the crack tip stress field described by both the stress intensity factor (SIF) and the T-stress, which are extracted using the interaction integral method. The proposed EFG method has been developed and applied for 2D case studies involving a crack in an orthotropic material, crack along an interface and a crack terminating at a bi-material interface, under mechanical or thermal loading; this is done to demonstrate the advantages and efficiency of the proposed methodology. The computed SIFs, T-stress and the predicted interface crack kink angles are compared with existing results in the literature and are found to be in good agreement. An example of crack growth through a particle-reinforced composite materials, which may involve crack meandering around the particle, is reported.
Resumo:
Tests for dependence of continuous, discrete and mixed continuous-discrete variables are ubiquitous in science. The goal of this paper is to derive Bayesian alternatives to frequentist null hypothesis significance tests for dependence. In particular, we will present three Bayesian tests for dependence of binary, continuous and mixed variables. These tests are nonparametric and based on the Dirichlet Process, which allows us to use the same prior model for all of them. Therefore, the tests are “consistent” among each other, in the sense that the probabilities that variables are dependent computed with these tests are commensurable across the different types of variables being tested. By means of simulations with artificial data, we show the effectiveness of the new tests.
Resumo:
Current trends in the automotive industry have placed increased importance on engine downsizing for passenger vehicles. Engine downsizing often results in reduced power output and turbochargers have been relied upon to restore the power output and maintain drivability. As improved power output is required across a wide range of engine operating conditions, it is necessary for the turbocharger to operate effectively at both design and off-design conditions. One off-design condition of considerable importance for turbocharger turbines is low velocity ratio operation, which refers to the combination of high exhaust gas velocity and low turbine rotational speed. Conventional radial flow turbines are constrained to achieve peak efficiency at the relatively high velocity ratio of 0.7, due the requirement to maintain a zero inlet blade angle for structural reasons. Several methods exist to potentially shift turbine peak efficiency to lower velocity ratios. One method is to utilize a mixed flow turbine as an alternative to a radial flow turbine. In addition to radial and circumferential components, the flow entering a mixed flow turbine also has an axial component. This allows the flow to experience a non-zero inlet blade angle, potentially shifting peak efficiency to a lower velocity ratio when compared to an equivalent radial flow turbine.
This study examined the effects of varying the flow conditions at the inlet to a mixed flow turbine and evaluated the subsequent impact on performance. The primary parameters examined were average inlet flow angle, the spanwise distribution of flow angle across the inlet and inlet flow cone angle. The results have indicated that the inlet flow angle significantly influenced the degree of reaction across the rotor and the turbine efficiency. The rotor studied was a custom in-house design based on a state-of-the-art radial flow turbine design. A numerical approach was used as the basis for this investigation and the numerical model has been validated against experimental data obtained from the cold flow turbine test rig at Queen’s University Belfast. The results of the study have provided a useful insight into how the flow conditions at rotor inlet influence the performance of a mixed flow turbine.