46 resultados para Mir.
Resumo:
Background: MicroRNAs (miRNAs) are a class of small RNA molecules that regulate expression of specific mRNA targets. They can be released from cells, often encapsulated within extracellular vesicles (EVs), and therefore have the potential to mediate intercellular communication. It has been suggested that certain miRNAs may be selectively exported, although the mechanism has yet to be identified. Manipulation of the miRNA content of EVs will be important for future therapeutic applications. We therefore wished to assess which endogenous miRNAs are enriched in EVs and how effectively an overexpressed miRNA would be exported.
Results: Small RNA libraries from HEK293T cells and vesicles before or after transfection with a vector for miR-146a overexpression were analysed by deep sequencing. A subset of miRNAs was found to be enriched in EVs; pathway analysis of their predicted target genes suggests a potential role in regulation of endocytosis. RT-qPCR in additional cell types and analysis of publicly available data revealed that many of these miRNAs tend to be widely preferentially exported. Whilst overexpressed miR-146a was highly enriched both in transfected cells and their EVs, the cellular:EV ratios of endogenous miRNAs were not grossly altered. MiR-451 was consistently the most highly exported miRNA in many different cell types. Intriguingly, Argonaute2 (Ago2) is required for miR-451 maturation and knock out of Ago2 has been shown to decrease expression of other preferentially exported miRNAs (eg miR-150 and miR-142-3p).
Conclusion: The global expression data provided by deep sequencing confirms that specific miRNAs are enriched in EVs released by HEK293T cells. Observation of similar patterns in a range of cell types suggests that a common mechanism for selective miRNA export may exist.
Resumo:
Epithelial ovarian cancer (EOC) has an innate susceptibility to become chemoresistant. Up to 30% of patients do not respond to conventional chemotherapy [paclitaxel (Taxol®) in combination with carboplatin] and, of those who have an initial response, many patients relapse. Therefore, an understanding of the molecular mechanisms that regulate cellular chemotherapeutic responses in EOC cells has the potential to impact significantly on patient outcome. The mitotic arrest deficiency protein 2 (MAD2), is a centrally important mediator of the cellular response to paclitaxel. MAD2 immunohistochemical analysis was performed on 82 high-grade serous EOC samples. A multivariate Cox regression analysis of nuclear MAD2 IHC intensity adjusting for stage, tumour grade and optimum surgical debulking revealed that low MAD2 IHC staining intensity was significantly associated with reduced progression-free survival (PFS) (p = 0.0003), with a hazard ratio of 4.689. The in vitro analyses of five ovarian cancer cell lines demonstrated that cells with low MAD2 expression were less sensitive to paclitaxel. Furthermore, paclitaxel-induced activation of the spindle assembly checkpoint (SAC) and apoptotic cell death was abrogated in cells transfected with MAD2 siRNA. In silico analysis identified a miR-433 binding domain in the MAD2 3' UTR, which was verified in a series of experiments. Firstly, MAD2 protein expression levels were down-regulated in pre-miR-433 transfected A2780 cells. Secondly, pre-miR-433 suppressed the activity of a reporter construct containing the 3'-UTR of MAD2. Thirdly, blocking miR-433 binding to the MAD2 3' UTR protected MAD2 from miR-433 induced protein down-regulation. Importantly, reduced MAD2 protein expression in pre-miR-433-transfected A2780 cells rendered these cells less sensitive to paclitaxel. In conclusion, loss of MAD2 protein expression results in increased resistance to paclitaxel in EOC cells. Measuring MAD2 IHC staining intensity may predict paclitaxel responses in women presenting with high-grade serous EOC.
Resumo:
MicroRNAs (miRNAs) are single-stranded non-coding RNAs that negatively regulate target gene expression through mRNA cleavage or translational repression. There is mounting evidence that they play critical roles in heart disease. The expression of known miRNAs in the heart has been studied at length by microarray and quantitative PCR but it is becoming evident that microRNA isoforms (isomiRs) are potentially physiologically important. It is well known that left ventricular (patho)physiology is influenced by transmural heterogeneity of cardiomyocyte phenotype, and this likely reflects underlying heterogeneity of gene expression. Given the significant role of miRNAs in regulating gene expression, knowledge of how the miRNA profile varies across the ventricular wall will be crucial to better understand the mechanisms governing transmural physiological heterogeneity. To determinine miRNA/isomiR expression profiles in the rat heart we investigated tissue from different locations across the left ventricular wall using deep sequencing. We detected significant quantities of 145 known rat miRNAs and 68 potential novel orthologs of known miRNAs, in mature, mature* and isomiR formation. Many isomiRs were detected at a higher frequency than their canonical sequence in miRBase and have different predicted targets. The most common miR-133a isomiR was more effective at targeting a construct containing a sequence from the gelsolin gene than was canonical miR-133a, as determined by dual-fluorescence assay. We identified a novel rat miR-1 homolog from a second miR-1 gene; and a novel rat miRNA similar to miR-676. We also cloned and sequenced the rat miR-486 gene which is not in miRBase (v18). Signalling pathways predicted to be targeted by the most highly detected miRNAs include Ubiquitin-mediated Proteolysis, Mitogen-Activated Protein Kinase, Regulation of Actin Cytoskeleton, Wnt signalling, Calcium Signalling, Gap junctions and Arrhythmogenic Right Ventricular Cardiomyopathy. Most miRNAs are not expressed in a gradient across the ventricular wall, with exceptions including miR-10b, miR-21, miR-99b and miR-486.
Resumo:
Osteosarcoma (OS) is a primary bone tumor that is most prevalent during adolescence. RUNX2, which stimulates differentiation and suppresses proliferation of osteoblasts, is deregulated in OS. Here, we define pathological roles of RUNX2 in the etiology of OS and mechanisms by which RUNX2 expression is stimulated. RUNX2 is often highly expressed in human OS biopsies and cell lines. Small interference RNA (siRNA)-mediated depletion of RUNX2 inhibits growth of U2OS OS cells. RUNX2 levels are inversely linked to loss of p53 (which predisposes to OS) in distinct OS cell lines and osteoblasts. RUNX2 protein levels decrease upon stabilization of p53 with the MDM2 inhibitor Nutlin-3. Elevated RUNX2 protein expression is post-transcriptionally regulated and directly linked to diminished expression of several validated RUNX2 targeting microRNAs (miRNAs) in human OS cells compared to mesenchymal progenitor cells. The p53-dependent miR-34c is the most significantly down-regulated RUNX2 targeting miRNA in OS. Exogenous supplementation of miR-34c markedly decreases RUNX2 protein levels, while 3UTR reporter assays establish RUNX2 as a direct target of miR-34c in OS cells. Importantly, Nutlin-3 mediated stabilization of p53 increases expression of miR-34c and decreases RUNX2. Thus, a novel RUNX2-p53-miR34 network controls cell growth of osseous cells and is compromised in OS.
Resumo:
Lipoxins, which are endogenously produced lipid mediators, promote the resolution of inflammation, and may inhibit fibrosis, suggesting a possible role in modulating renal disease. Here, lipoxin A4 (LXA4) attenuated TGF-ß1-induced expression of fibronectin, N-cadherin, thrombospondin, and the notch ligand jagged-1 in cultured human proximal tubular epithelial (HK-2) cells through a mechanism involving upregulation of the microRNA let-7c. Conversely, TGF-ß1 suppressed expression of let-7c. In cells pretreated with LXA4, upregulation of let-7c persisted despite subsequent stimulation with TGF-ß1. In the unilateral ureteral obstruction model of renal fibrosis, let-7c upregulation was induced by administering an LXA4 analog. Bioinformatic analysis suggested that targets of let-7c include several members of the TGF-ß1 signaling pathway, including the TGF-ß receptor type 1. Consistent with this, LXA4-induced upregulation of let-7c inhibited both the expression of TGF-ß receptor type 1 and the response to TGF-ß1. Overexpression of let-7c mimicked the antifibrotic effects of LXA4 in renal epithelia; conversely, anti-miR directed against let-7c attenuated the effects of LXA4. Finally, we observed that several let-7c target genes were upregulated in fibrotic human renal biopsies compared with controls. In conclusion, these results suggest that LXA4-mediated upregulation of let-7c suppresses TGF-ß1-induced fibrosis and that expression of let-7c targets is dysregulated in human renal fibrosis.
Resumo:
Purpose: MicroRNAs (miRNAs) are small non-coding RNAs of ~18-22 nucleotides in length that regulate gene expression. They are widely expressed in the retina, being both required for its normal development and perturbed in disease. The aim of this study was to apply new high-throughput sequencing techniques to more fully characterise the microRNAs and other small RNAs expressed in the retina and retinal pigment epithelium (RPE)/choroid of the mouse.
Methods: Retina and RPE/choroid were dissected from eyes of 3 month-old C57BL/6J mice. Small RNA libraries were prepared and deep sequencing performed on a Genome Analyzer (Illumina). Reads were annotated by alignment to miRBase, other non-coding RNA databases and the mouse genome.
Results: Annotation of 9 million reads to 320 microRNAs in retina and 340 in RPE/choroid provides the most comprehensive profiling of microRNAs to date. Two novel microRNAs were identified in retina. Members of the sensory organ specific miR-183,-182,-96 cluster were amongst the most highly expressed, retina-enriched microRNAs. Remarkably, microRNA 'isomiRs', which vary slightly in length and are differentially detected by Taqman RT-PCR assays, existed for all the microRNAs identified in both tissues. More variation occurred at the 3' ends, including non-templated additions of T and A. Drosha-independent mirtron microRNAs and other small RNAs derived from snoRNAs were also detected.
Conclusions: Deep sequencing has revealed the complexity of small RNA expression in the mouse retina and RPE/choroid. This knowledge will improve the design and interpretation of future functional studies of the role of microRNAs and other small RNAs in retinal disease.
Resumo:
Finding a suitable cell source for endothelial cells (ECs) for cardiovascular regeneration is a challenging issue for regenerative medicine. In the paper we describe a novel mechanism regulating induced pluripotent stem cells (iPSC) differentiation into ECs, with a particular focus on miRNAs and their targets. We first established a protocol using collagen IV and VEGF to drive the functional differentiation of iPSCs into ECs and compared the miRNA signature of differentiated and undifferentiated cells. Among the miRNAs overrepresented in differentiated cells, we focused on microRNA-21 (miR-21) and studied its role in iPSC differentiation. Overexpression of miR-21 in pre-differentiated iPSCs induced EC marker upregulation and in vitro and in vivo capillary formation; accordingly, inhibition of miR-21 produced the opposite effects. Importantly, miR-21 overexpression increased TGF-β2 mRNA and secreted protein level, consistent with the strong upregulation of TGF-β2 during iPSC differentiation. Indeed, treatment of iPSCs with TGFβ-2 induced EC marker expression and in vitro tube formation. Inhibition of SMAD3, a downstream effector of TGFβ-2, strongly decreased VE-cadherin expression. Furthermore, TGFβ-2 neutralization and knockdown inhibited miR-21-induced EC marker expression. Finally, we confirmed the PTEN/Akt pathway as a direct target of miR-21 and we showed that PTEN knockdown is required for miR-21 mediated endothelial differentiation. In conclusion, we elucidated a novel signaling pathway that promotes the differentiation of iPSC into functional ECs suitable for regenerative medicine applications.
Resumo:
Aims: Recent ability to derive endothelial cells (ECs) from induced pluripotent stem (iPS) cells holds a great therapeutic potential for personalised medicine and stem cell therapy. We aimed that better understanding of the complex molecular signals that are evoked during iPS cell differentiation towards ECs may allow specific targeting of their activities to enhance cell differentiation and promote tissue regeneration.
Methods and Results: In this study we have generated mouse iPS cells from fibroblasts using established protocol. When iPS cells were cultivated on type IV mouse collagen-coated dishes in differentiation medium, cell differentiation toward vascular lineages were observed. To study the molecular mechanisms of iPS cell differentiation, we found that miR-199b is involved in EC differentiation. A step-wise increase in expression of miR-199 was detected during EC differentiation. Notably, miR-199b targeted the Notch ligand JAG1, resulting in VEGF transcriptional activation and secretion through the transcription factor STAT3. Upon shRNA-mediated knockdown of the Notch ligand JAG1, the regulatory effect of miR-199b was ablated and there was robust induction of STAT3 and VEGF during EC differentiation. Knockdown of JAG1 also inhibited miR-199b-mediated inhibition of iPS cell differentiation towards SMCs. Using the in vitro tube formation assay and implanted Matrigel plugs, in vivo, miR-199b also regulated VEGF expression and angiogenesis.
Conclusions: This study indicates a novel role for miR-199b as a regulator of the phenotypic switch during vascular cell differentiation derived from iPS cells by regulating critical signaling angiogenic responses.
Resumo:
Introduction:
Ovarian cancer patients presenting with advanced stage (III/IV)
canceraretreatedwithcarboplatinumincombinationwithpaclitaxel.Despitea
significant initial response rate, fewer than 20% of patients become long-term
survivors. We have published that low MAD2 expression levels associate with
reduced progression free survival (PFS) in patients with high-grade serous
epithelial ovarian cancer (EOC). Moreover, we have demonstrated that MAD2
expressionisdown-regulatedbythemicroRNAmiR-433(
Furlong et al., 2011
).
Interestingly, miR-433 also down-regulates HDAC6 (
Simon et al., 2010
), which
uniquely deacetylates
a
-tubulin prior to HDAC6s binding to
b
-tubulin.
In vitro
studies have shown that HDAC6 inhibition in combination with paclitaxel
treatment enhances chemoresistant cancer cell death. To date, an interaction
between MAD2 and HDAC6 has not been reported.
Experimental design:
MAD2 and HDAC6 immunohistochemistry (IHC) and
Western blot analyses were performed to investigate the role of HDAC6 and
MAD2 in chemoresistance to paclitaxel in high-grade serous EOC.
Results and Discussion:
In vitro
experiments demonstrated that overex-
pression of pre-miR-433, which targets MAD2, resulted in down-regulation
of HDAC6 in EOC cell lines. High levels of HDAC6 are co-expressed with
MAD2 in the paclitaxel resistant UPN251 and OVCAR7 cell lines. While, all
4 paclitaxel resistant EOC cell lines express higher levels of miR-433 than
the paclitaxel sensitive A2780 cells, only ovca432 and ovca433 demonstrated
down-regulation of both HDAC6 and MAD2. Paclitaxel binds to
b
-tubulin and
causesmicrotubulepolymerizationinpaclitaxelsensitivecellsasdemonstrated
by tubulin acetylation in A2780 cells. However, paclitaxel failed to cause a
significant acetylation of
a
-tubulin and microtubule stabilisation in the resistant
UPN251 cells. Therefore resistance in this cell line may be mediated by
aberrantly high HDAC6 activity. We have previously shown that MAD2 knock-
down cells are resistant to paclitaxel (
Furlong F., et al., 2011; Prencipe M.,
et al., 2009
). We measured HDAC6 protein expression in MAD2 knockdown
cells and showed that MAD2 knockdown is associated with concomitant
up-regulation of HDAC6. We hypothesise that the up-regulation of HDAC6
by MAD2 knockdown renders cancer cells more resistant to paclitaxel and
increases the invasive potential of these cells. On-going experiments will test
this hypothesis. Lastly we have observed differential MAD2 and HDAC6 IHC
staining intensity in formalin fixed paraffin embedded EOC samples.
In conclusion
, we have reported on a novel interaction between MAD2 and
HDAC6 which may have important consequences for paclitaxel resistant EOC.
Moreover, understanding chemo-responsiveness in ovarian tumours will lead
to improved patient management and treatment options for women diagnosed
with this disease
Resumo:
BACKGROUND: Exposure to environmental toxins during embryonic development may lead to epigenetic changes that influence disease risk in later life. Aflatoxin is a contaminant of staple foods in sub-Saharan Africa, is a known human liver carcinogen and has been associated with stunting in infants.
METHODS: We have measured aflatoxin exposure in 115 pregnant women in The Gambia and examined the DNA methylation status of white blood cells from their infants at 2-8 months old (mean 3.6 ± 0.9). Aflatoxin exposure in women was assessed using an ELISA method to measure aflatoxin albumin (AF-alb) adducts in plasma taken at 1-16 weeks of pregnancy. Genome-wide DNA methylation of infant white blood cells was measured using the Illumina Infinium HumanMethylation450beadchip.
RESULTS: AF-alb levels ranged from 3.9 to 458.4 pg/mg albumin. We found that aflatoxin exposure in the mothers was associated to DNA methylation in their infants for 71 CpG sites (false discovery rate < 0.05), with an average effect size of 1.7% change in methylation. Aflatoxin-associated differential methylation was observed in growth factor genes such as FGF12 and IGF1, and immune-related genes such as CCL28, TLR2 and TGFBI. Moreover, one aflatoxin-associated methylation region (corresponding to the miR-4520b locus) was identified.
CONCLUSIONS: This study shows that maternal exposure to aflatoxin during the early stages of pregnancy is associated with differential DNA methylation patterns of infants, including in genes related to growth and immune function. This reinforces the need for interventions to reduce aflatoxin exposure, especially during critical periods of fetal and infant development.
Resumo:
We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with Swift ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten et al. (2012, ApJ, 757, 31). We find that the absorption minimum for the hydrogen lines is never seen below ~11 000 km s-1 but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 M⊙ to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between ~10 and ~15 days, close to the photosphere and then move outward in velocity until ~40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the γ-rays is driving the early evolution of these lines. The Spitzer 4.5 μm band shows a significant flux excess, which we attribute to CO fundamental band emission or a thermal dust echo although further work using late time data is needed. Thedistance and in particular the extinction, where we use spectral modelling to put further constraints, is discussed in some detail as well as the sensitivity of the hydrodynamical modelling to errors in these quantities. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by ~75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag day-1 respectively are consistent with the remaining flux being emitted by the SN. Hence we find that the star was indeed the progenitor of SN 2011dh as previously suggested by Maund et al. (2011, ApJ, 739, L37) and which is also consistent with the results from the hydrodynamical modelling. Figures 2, 3, Tables 3-10, and Appendices are available in electronic form at http://www.aanda.orgThe photometric tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A17
Resumo:
We present optical and near-infrared (NIR) photometry and spectroscopy as well as modelling of the lightcurves of the Type IIb supernova (SN) 2011dh. Our extensive dataset, for which we present the observations obtained after day 100, spans two years, and complemented with Spitzer mid-infrared (MIR) data, we use it to build an optical-to-MIR bolometric lightcurve between days 3 and 732. To model the bolometric lightcurve before day 400 we use a grid of hydrodynamical SN models, which allows us to determine the errors in the derived quantities, and a bolometric correction determined with steady-state non-local thermodynamic equilibrium (NLTE) modelling. Using this method we find a helium core mass of 3.1<sup>+0.7</sup><inf>-0.4</inf> M<inf>⊙</inf> for SN 2011dh, consistent within error bars with previous results obtained using the bolometric lightcurve before day 80. We compute bolometric and broad-band lightcurves between days 100 and 500 from spectral steady-state NLTE models, presented and discussed in a companion paper. The preferred 12 M<inf>⊙</inf> (initial mass) model, previously found to agree well with the observed spectra, shows a good overall agreement with the observed lightcurves, although some discrepancies exist. Time-dependent NLTE modelling shows that after day ∼600 a steady-state assumption is no longer valid. The radioactive energy deposition in this phase is likely dominated by the positrons emitted in the decay of <sup>56</sup>Co, but seems insufficient to reproduce the lightcurves, and what energy source is dominating the emitted flux is unclear. We find an excess in the K and the MIR bands developing between days 100 and 250, during which an increase in the optical decline rate is also observed. A local origin of the excess is suggested by the depth of the He I 20 581 Å absorption. Steady-state NLTE models with a modest dust opacity in the core (τ = 0.44), turned on during this period, reproduce the observed behaviour, but an additional excess in the Spitzer 4.5 μm band remains. Carbon-monoxide (CO) first-overtone band emission is detected at day 206, and possibly at day 89, and assuming the additional excess to bedominated by CO fundamental band emission, we find fundamental to first-overtone band ratios considerably higher than observed in SN 1987A. The profiles of the [O i] 6300 Å and Mg i] 4571 Å lines show a remarkable similarity, suggesting that these lines originate from a common nuclear burning zone (O/Ne/Mg), and using small scale fluctuations in the line profiles we estimate a filling factor of ≲ 0.07 for the emitting material. This paper concludes our extensive observational and modelling work on SN 2011dh. The results from hydrodynamical modelling, steady-state NLTE modelling, and stellar evolutionary progenitor analysis are all consistent, and suggest an initial mass of ∼12 M<inf>⊙</inf> for the progenitor.
Resumo:
The ability to reprogram induced pluripotent stem (iPS) cells from somatic cells may facilitate significant advances in regenerative medicine. MicroRNAs (miRNAs) are involved in a number of core biological processes, including cardiogenesis, hematopoietic lineage differentiation and oncogenesis. An improved understanding of the complex molecular signals that are required for the differentiation of iPS cells into endothelial cells (ECs) may allow specific targeting of their activity in order to enhance cell differentiation and promote tissue regeneration. The present study reports that miR‑199a is involved in EC differentiation from iPS cells. Augmented expression of miR‑199a was detected during EC differentiation, and reached higher levels during the later stages of this process. Furthermore, miR‑199a inhibited the differentiation of iPS cells into smooth muscle cells. Notably, sirtuin 1 was identified as a target of miR‑199a . Finally, the ability of miR‑199a to induce angiogenesis was evaluated in vitro, using Matrigel plugs assays. This may indicate a novel function for miR‑199a as a regulator of the phenotypic switch during vascular cell differentiation. The present study provides support to the notion that with an understanding of the molecular mechanisms underlying vascular cell differentiation, stem cell regenerative therapy may ultimately be developed as an effective treatment for cardiovascular disease.
Resumo:
Objective: Smooth muscle cell (SMC) migration and proliferation play an essential role in neointimal formation after vascular injury. In this study, we intended to investigate whether the X-box-binding protein 1 (XBP1) was involved in these processes.
Approach and Results: In vivo studies on femoral artery injury models revealed that vascular injury triggered an immediate upregulation of XBP1 expression and splicing in vascular SMCs and that XBP1 deficiency in SMCs significantly abrogated neointimal formation in the injured vessels. In vitro studies indicated that platelet-derived growth factor-BB triggered XBP1 splicing in SMCs via the interaction between platelet-derived growth factor receptor β and the inositol-requiring enzyme 1α. The spliced XBP1 (XBP1s) increased SMC migration via PI3K/Akt activation and proliferation via downregulating calponin h1 (CNN1). XBP1s directed the transcription of mir-1274B that targeted CNN1 mRNA degradation. Proteomic analysis of culture media revealed that XBP1s decreased transforming growth factor (TGF)-β family proteins secretion via transcriptional suppression. TGF-β3 but not TGF-β1 or TGF-β2 attenuated XBP1s-induced CNN1 decrease and SMC proliferation.
Conclusions: This study demonstrates for the first time that XBP1 is crucial for SMC proliferation via modulating the platelet-derived growth factor/TGF-β pathways, leading to neointimal formation.