35 resultados para Minimum lactate and Cooper test
Resumo:
This paper investigates the mechanism of nanoscale fatigue of functionally graded TiN/TiNi films using nano-impact and multiple-loading-cycle nanoindentation tests. The functionally graded films were deposited on silicon substrate, in which TiNi films maintain shape memory and pseudo elastic behavior, while a modified TiN surface layer provides tribological and anti-corrosion properties. Nanomechanical tests were performed to comprehend the localized film performance and failure modes of the functionally graded film using NanoTestTM equipped with Berkovich and conical indenter between 100 μN to 500 mN loads. The loading mechanism and load history are critical to define film failure modes (i.e. backward depth deviation) including the shape memory effect of the functionally graded layer. The results are sensitive to the applied load, loading type (e.g. semi-static, dynamic) and probe geometry. Based on indentation force-depth profiles, depth-time data and post-test surface observations of films, it is concluded that the shape of the nanoindenter is critical in inducing the localized indentation stress and film failure, including shape recovery at the lower load range. Elastic-plastic finite element (FE) simulation during nanoindentation loading indicated that the location of subsurface maximum stress near the interface influences the backward depth deviation type of film failure. A standalone, molecular dynamics simulation was performed with the help of a long range potential energy function to simulate the tensile test of TiN nanowire with two different aspect ratios to investigate the theory of its failure mechanism.
Resumo:
This article examines the influence on the engineering design process of the primary objective of validation, whether it is proving a model, a technology or a product. Through the examination of a number of stiffened panel case studies, the relationships between simulation, validation, design and the final product are established and discussed. The work demonstrates the complex interactions between the original (or anticipated) design model, the analysis model, the validation activities and the product in service. The outcome shows clearly some unintended consequences. High fidelity validation test simulations require a different set of detailed parameters to accurately capture behaviour. By doing so, there is a divergence from the original computer-aided design model, intrinsically limiting the value of the validation with respect to the product. This work represents a shift from the traditional perspective of encapsulating and controlling errors between simulation and experimental test to consideration of the wider design-test process. Specifically, it is a reflection on the implications of how models are built and validated, and the effect on results and understanding of structural behaviour. This article then identifies key checkpoints in the design process and how these should be used to update the computer-aided design system parameters for a design. This work strikes at a fundamental challenge in understanding the interaction between design, certification and operation of any complex system.
Resumo:
The purpose of this paper is to conceptualise and operationalise the concept of supply chain management sustainability practices. Based on a multi-stage procedure involving a literature review, expert Q-sort and pre-test process, pilot test and survey of 156 supply chain directors and managers in Ireland, we develop a multidimensional conceptualisation and measure of social and environmental supply chain management sustainability practices. The research findings show theoretically sound constructs based on four underlying sustainable supply chain management practices: monitoring, implementing systems, new product and process development and strategy redefinition. A two-factor model is then identified as the most reliable: comprising process-based and market-based practices.
Resumo:
Understanding animal contests has benefited greatly from employing the concept of fighting ability, termed resource-holding potential (RHP), with body size/weight typically used as a proxy. However, victory does not always go to the larger/heavier contestant and the existing RHP approach thereby fails to accurately predict contest outcome. Aggressiveness, typically studied as a personality trait, might explain part of this discrepancy. We investigated whether aggressiveness forms a component of RHP, examining effects on contest outcome, duration and phases, plus physiological measures of costs (lactate and glucose). Furthermore, using the correct theoretical framework, we provide the first study to investigate whether individuals gather and use information on aggressiveness as part of an assessment strategy. Pigs, Sus scrofa, were assessed for aggressiveness in resident-intruder tests whereby attack latency reflects aggressiveness. Contests were then staged between size-matched animals diverging in aggressiveness. Individuals with a short attack latency in the resident-intruder test almost always initiated the first bite and fight in the subsequent contest. However, aggressiveness had no direct effect on contest outcome, whereas bite initiation did lead to winning in contests without an escalated fight. This indirect effect suggests that aggressiveness is not a component of RHP, but rather reflects a signal of intent. Winner and loser aggressiveness did not affect contest duration or its separate phases, suggesting aggressiveness is not part of an assessment strategy. A greater asymmetry in aggressiveness prolonged contest duration and the duration of displaying, which is in a direction contrary to assessment models based on morphological traits. Blood lactate and glucose increased with contest duration and peaked during escalated fights, highlighting the utility of physiological measures as proxies for fight cost. Integrating personality traits into the study of contest behaviour, as illustrated here, will enhance our understanding of the subtleties of agonistic interactions.
Resumo:
The mode I and mode II fracture properties of the FM300-2 adhesive bond between 5HS/RTM6 laminates are determined experimentally by DCB and ELS test. The crack propagation is studied numerically by means of interface elements based on the decohesive zone model. The latter is characterized by material degradation, which is usually assumed to be linear. In the present study it is shown that if a non-linear material degradation is used with an increased magnitude of the interface relative displacement at failure it is possible to model more correctly the experimentally observed significant non-linear behaviour before the start of crack propagation. An adhesive stepped flush joint is studied experimentally and numerically. A mixed mode interaction criterion is used together with the nonlinear material degradation of the interface. Sensitivity studies are performed to study the influence of the parameters defining it.