81 resultados para Mild gestational hyperglycemia
Resumo:
OBJECTIVE:Diabetes during pregnancy is a strong risk factor for obesity in the offspring, but the age at which this association becomes apparent is unknown. The purpose of this study was to examine the relation of glycemia during pregnancy with anthropometry in offspring of nondiabetic pregnant women from the Belfast U.K. center of the multinational Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study.
RESEARCH DESIGN AND METHODS: Women from the HAPO Study were invited to participate in follow-up of their offspring aged 2 years. Measurements included height, weight, and thickness of triceps, subscapular, and suprailiac skinfolds. RESULTS: A total of 1,165 offspring (73% of eligible children; 598 boys and 567 girls) were seen from ages 22-30 completed months. The only association that reached statistical significance was between categories of maternal 1-h glucose and BMI Z score =85th percentile at 2 years (P = 0.017). Overall the correlations between maternal glucose during pregnancy and BMI Z score at age 2 years were weak (fasting glucose r = 0.05, P = 0.08; 1-h glucose r = 0.04, P = 0.22; 2-h glucose r = 0.03, P = 0.36; and area under the curve for glucose r = 0.04, P = 0.18).
CONCLUSIONS: This study found little association between maternal glucose during pregnancy and obesity in the offspring at this young age. These findings are not unexpected given that study results for young offspring whose mothers had diabetes during pregnancy were indistinguishable from those for normal offspring at this age. It will be interesting to see whether, as these children age, maternal glucose during pregnancy in the ranges included in the HAPO Study will be associated with obesity in their children. © 2010 by the American Diabetes Association.
Resumo:
Rationale, aims and objective To investigate whether the introduction of a programme of optimising drug treatment, intensive education and self-monitoring of patients diagnosed with gestational diabetes mellitus (GDM) at an early stage (
Resumo:
OBJECTIVE
To assess the relationship between glycemic control, pre-eclampsia, and gestational hypertension in women with type 1 diabetes.
RESEARCH DESIGN AND METHODS
Pregnancy outcome (pre-eclampsia or gestational hypertension) was assessed prospectively in 749 women from the randomized controlled Diabetes and Pre-eclampsia Intervention Trial (DAPIT). HbA1c (A1C) values were available up to 6 months before pregnancy (n = 542), at the first antenatal visit (median 9 weeks) (n = 721), at 26 weeks’ gestation (n = 592), and at 34 weeks’ gestation (n = 519) and were categorized as optimal (<6.1%: referent), good (6.1–6.9%), moderate (7.0–7.9%), and poor (=8.0%) glycemic control, respectively.
RESULTS
Pre-eclampsia and gestational hypertension developed in 17 and 11% of pregnancies, respectively. Women who developed pre-eclampsia had significantly higher A1C values before and during pregnancy compared with women who did not develop pre-eclampsia (P < 0.05, respectively). In early pregnancy, A1C =8.0% was associated with a significantly increased risk of pre-eclampsia (odds ratio 3.68 [95% CI 1.17–11.6]) compared with optimal control. At 26 weeks’ gestation, A1C values =6.1% (good: 2.09 [1.03–4.21]; moderate: 3.20 [1.47–7.00]; and poor: 3.81 [1.30–11.1]) and at 34 weeks’ gestation A1C values =7.0% (moderate: 3.27 [1.31–8.20] and poor: 8.01 [2.04–31.5]) significantly increased the risk of pre-eclampsia compared with optimal control. The adjusted odds ratios for pre-eclampsia for each 1% decrement in A1C before pregnancy, at the first antenatal visit, at 26 weeks’ gestation, and at 34 weeks’ gestation were 0.88 (0.75–1.03), 0.75 (0.64–0.88), 0.57 (0.42–0.78), and 0.47 (0.31–0.70), respectively. Glycemic control was not significantly associated with gestational hypertension.
CONCLUSIONS
Women who developed pre-eclampsia had significantly higher A1C values before and during pregnancy. These data suggest that optimal glycemic control both early and throughout pregnancy may reduce the risk of pre-eclampsia in women with type 1 diabetes.
Resumo:
Maternal diabetes mellitus is associated with increased teratogenesis, which can occur in pregestational type 1 and type 2 diabetes. Cardiac defects and with neural tube defects are the most common malformations observed in fetuses of pregestational diabetic mothers. The exact mechanism by which diabetes exerts its teratogenic effects and induces embryonic malformations is unclear. Whereas the sequelae of maternal pregestational diabetes, such as modulating insulin levels, altered fat levels, and increased reactive oxygen species, may play a role in fetal damage during diabetic pregnancy, hyperglycemia is thought to be the primary teratogen, causing particularly adverse effects on cardiovascular development. Fetal cardiac defects are associated with raised maternal glycosylated hemoglobin levels and are up to five times more likely in infants of mothers with pregestational diabetes compared with those without diabetes. The resulting anomalies are varied and include transposition of the great arteries, mitral and pulmonary atresia, double outlet of the right ventricle, tetralogy of Fallot, and fetal cardiomyopathy.