97 resultados para Metal Oxides as Heterogeneous Catalysts
Resumo:
The electron energy-loss near-edge structure (ELNES) at the O K edge has been studied in yttria-stabilized zirconia (YSZ). The electronic structure of YSZ for compositions between 3 and 15 mol % Y2O3 has been computed using a pseudopotential-based technique to calculate the local relaxations near the O vacancies. The results showed phase transition from the tetragonal to cubic YSZ at 10 mol % of Y2O3, reproducing experimental observations. Using the relaxed defect geometry, calculation of the ELNES was carried out using the full-potential linear muffin-tin orbital method. The results show very good agreement with the experimental O K-edge signal, demonstrating the power of using ELNES to probe the stabilization mechanism in doped metal oxides.
Resumo:
The electron energy-loss near-edge structure (ELNES) at the oxygen K-edge has been investigated in a range of yttria-stabilized zirconia (YSZ) materials. The electronic structure of the three polymorphs of pure ZrO2 and of the doped YSZ structure close to the 33 mol %Y2O3 composition have been calculated using a full-potential linear muffin-tin orbital method (NFP-LMTO) as well as a pseudopotential based technique. Calculations of the ELNES dipole transition matrix elements in the framework of the NFP-LMTO scheme and inclusion of core hole screening within Slater's transition state theory enable the ELNES to be computed. Good agreement between the experimental and calculated ELNES is obtained for pure monoclinic ZrO2. The agreement is less good with the ideal tetragonal and cubic structures. This is because the inclusion of defects is essential in the calculation of the YSZ ELNES. If the model used contains ordered defects such as vacancies and metal Y planes, agreement between the calculated and experimental O K-edges is significantly improved. The calculations show how the five different O environments of Zr,Y,O, are connected with the features observed in the experimental spectra and demonstrate clearly the power of using ELNES to probe the stabilization mechanism in doped metal oxides.
Resumo:
The paper presents a new method to extract the chemical transformation rate from reaction–diffusion data with no assumption on the kinetic model (“kinetic model-free procedure”). It is a new non-steady-state kinetic characterization procedure for heterogeneous catalysts. The mathematical foundation of the Y-procedure is a Laplace-domain analysis of the two inert zones in a TZTR followed by transposition to the Fourier domain. When combined with time discretization and filtering the Y-procedure leads to an efficient practical method for reconstructing the concentration and reaction rate in the active zone. Using the Y-procedure the concentration and reaction rate of a non-steady state catalytic process can be determined without any pre-assumption regarding the type of kinetic dependence. The Y-procedure is the basis for advanced software for non-steady state kinetic data interpretation. The Y-procedure can be used to relate changes in the catalytic reaction rate and kinetic parameters to changes in the surface composition (storage) of a catalyst.
Resumo:
Electrochemical capacitors, also known as supercapacitors, are becoming increasingly important components in energy storage, although their widespread use has not been attained due to a high cost/ performance ratio. Fundamental research is contributing to lowered costs through the engineering of new materials. Currently the most viable materials used in electrochemical capacitors are biomassderived and polymer-derived activated carbons, although other carbon materials are useful research tools. Metal oxides could result in a step change for electrochemical capacitor technology and is an exciting area of research. The selection of an appropriate electrolyte and electrode structure is fundamental in determining device performance. Although there are still many uncertainties in understanding the underlying mechanisms involved in electrochemical capacitors, genuine progress continues to be made. It is argued that a large, collaborative international research programme is necessary to fully develop the potential of electrochemical capacitors.
Resumo:
Correlation analyses were conducted on nickel (Ni), vanadium (V) and zinc (Zn) oral bioaccessible fractions (BAFs) and selected geochemistry parameters to identify specific controls exerted over trace element bioaccessibility. BAFs were determined by previous research using the unified BARGE method. Total trace element concentrations and soil geochemical parameters were analysed as part of the Geological Survey of Northern Ireland Tellus Project. Correlation analysis included Ni, V and Zn BAFs against their total concentrations, pH, estimated soil organic carbon (SOC) and a further eight element oxides. BAF data were divided into three separate generic bedrock classifications of basalt, lithic arenite and mudstone prior to analysis, resulting in an increase in average correlation coefficients between BAFs and geochemical parameters. Sulphur trioxide and SOC, spatially correlated with upland peat soils, exhibited significant positive correlations with all BAFs in gastric and gastro-intestinal digestion phases, with such effects being strongest in the lithic arenite bedrock group. Significant negative relationships with bioaccessible Ni, V and Zn and their associated total concentrations were observed for the basalt group. Major element oxides were associated with reduced oral trace element bioaccessibility, with Al2O3 resulting in the highest number of significant negative correlations followed by Fe2O3. spatial mapping showed that metal oxides were present at reduced levels in peat soils. The findings illustrate how specific geology and soil geochemistry exert controls over trace element bioaccessibility, with soil chemical factors having a stronger influence on BAF results than relative geogenic abundance. In general, higher Ni, V and Zn bioaccessibility is expected in peat soil types.
Resumo:
Methods to control the dispersion of gold in supported heterogeneous catalysts are very valuable due to the strong nanoparticle size dependence on their activity and selectivity towards many reactions. Additionally, the ability to disperse large, inactive gold nanoparticles to smaller nanoparticles provides an opportunity to reactivate, stabilise and increase the lifetime of gold catalysts making them more practical for industrial applications. Previously it has been demonstrated that the use of gas phase iodomethane (J. Am. Chem. Soc., 2009, 131, 6973; Angew. Chem., Int. Ed., 2011, 50, 8912) was able to re-disperse gold from >20 nm particles to dimers and trimers. In the current work, we show that this technique can be applied using less hazardous halohydrocarbons treatments, both in the gas phase and the liquid phase. The ability of these individual halohydrocarbons to re-disperse gold as well as the extent to which leaching occurs is assessed.
Resumo:
The combination of gold nanoparticles (AuNPs) with chromium-substituted hydrotalcite (Cr-HT) supports makes very efficient heterogeneous catalysts (Au/Cr-HT) for aerobic alcohol oxidation under soluble-base-free conditions. The Au-support synergy increases with increasing Cr content of the support and decreasing AuNP size. In situ UV-Raman, X-ray absorption and photoelectron spectroscopic studies firmly establish that the strong Au-Cr synergy is related to a Cr ↔ Cr redox cycle at the Au/Cr-HT interface, where O activation takes place accompanied by electron transfer from Cr-HT to Au. The interfacial Cr species can be reduced by surface Au-H hydride and negative-charged Au species to close the catalytic cycle. A study of kinetic isotope effect indicates that alcohol O-H cleavage is facilitated by the presence of Cr, making a-C-H bond cleavage step more rate-controlling. Accordingly, a dual synergistic effect of Au/Cr-HT catalysts on the activation of O2 and alcohol reactants is proposed.
Resumo:
Structures and catalytic activities of Au thin films supported at anatase TiO(2)(101)) and a Au substrate are studied by using density functional theory calculations. The results show that O(2) can hardly adsorb at flat and stepped Au thin films, even supported by fully reduced TiO(2)(101) that can highly disperse Au atoms and offer strong electronic promotion. Interestingly, in both oxide-supported and pure Au. systems, wire-structured Au can adsorb both CO and O(2) rather strongly, and kinetic analysis suggests its high catalytic activity for low-temperature CO oxidation. The d-band center of Au at the catalytic site is determined to account for the unusual activity of the wire-structured film. A generalized structural model based on the wire-structured film is proposed for active Au, and possible support effects are discussed: Selected oxide surfaces can disperse Au atoms and stabilize the formation of a filmlike structure; they may also serve as a template for the preferential arrangement of Au atoms in a wire structure under low Au coverage.
Resumo:
The basic principles of semiconductor photochemistry, particularly using titania as a semiconductor photocatalyst, are discussed. When a platinum group metal or its oxide is deposited onto the surface of a sensitised semiconductor the overall efficiency of the reactions it takes part in are often improved, especially when the deposits are used as hydrogen and oxygen catalysts, respectively. Methods of depositing metal or metal oxide are examined, and a particular focus is given to a photodeposition process that uses a sacrificial electron donor. Platinum group metal and platinum group metal oxide coated semiconductor photocatalysts are prominent in heterogeneous systems that are capable of the photoreduction, oxidation and cleavage of water. There is a recent renaissance in work on water-splitting semiconductor-sensitised photosystems, but there are continued concerns over their irreproducibility, longevity and photosynthetic nature.
Resumo:
Research on the selective reduction of NOx with hydrocarbons under lean-burn conditions using non-zeolitic oxides and platinum group metal (PGM) catalysts has been critically reviewed. Alumina and silver-promoted alumina catalysts have been described in detail with particular emphasis on an analysis of the various reaction mechanisms that have been put forward in the literature. The influence of the nature of the reducing agent, and the preparation and structure of the catalysts have also been discussed and rationalised for several other oxide systems. It is concluded for non-zeolitic oxides that species that are strongly adsorbed on the surface, such as nitrates/nitrites and acetates, could be key intermediates in the formation of various reduced and oxidised species of nitrogen, the further reaction of which leads eventually to the formation of molecular nitrogen. For the platinum group metal catalysts, the different mechanisms that have been proposed in the literature have been critically assessed. It is concluded that although there is indirect, mainly spectroscopic, evidence for various reaction intermediates on the catalyst surface, it is difficult to confirm that any of these are involved in a critical mechanistic step because of a lack of a direct quantitative correlation between infrared and kinetic measurements. A simple mechanism which involves the dissociation of NO on a reduced metal surface to give N(ads) and O(ads), with subsequent desorption of N-2 and N2O and removal of O(ads) by the reductant can explain many of the results with the platinum group metal catalysts, although an additional contribution from organo-nitro-type species may contribute to the overall NOx reduction activity with these catalysts.
Resumo:
Heterogeneous catalytic oxidation of a series of thioethers (2-thiomethylpyrimidine, 2-thiomethyl-4,6-dimethyl-pyrimidine, 2-thiobenzylpyrimidine, 2-thiobenzyl-4,6-dimethylpyrimidine, thioanisole, and n-heptyl methyl sulfide) was performed in ionic liquids by using MCM-41 and UVM-type mesoporous catalysts containing Ti, or Ti and Ge. A range of triflate, tetrafluoroborate, trifluoroacetate, lactate and bis(trifluoromethanesulfonyl)imide-based ionic liquids were used. The oxidations were carried out by using anhydrous hydrogen peroxide or the urea-hydrogen peroxide adduct and showed that ionic liquids are very effective solvents, achieving greater reactivity and selectivity than reactions performed in dioxane. The effects of halide and acid impurities on the reactions were also investigated. Recycling experiments on catalysts were carried out in order to evaluate Ti leaching and its effect on activity and selectivity.
Resumo:
Aerogels containing palladium metal nanoparticles were prepared using an ionic liquid route and tested for activity towards hydrogenation and Heck C-C coupling reactions. (C) 2003 Elsevier B.V. All rights reserved.