168 resultados para MULTIPHOTON IONIZATION
Resumo:
In recent years there have been many studies of multiple ionization of closed shell rare gas atoms by intense laser fields. Until now no similar work has been done in the study of more diverse targets such as negative ions where low binding energies and strong electron correlations could yield distinctive behaviour. We present the first results of ionization of more than one electron from a range of atomic negative ions by intense laser pulses. Although these pulses are long by modern standards, and tend to produce sequential ionization in atoms, the positive ion yields from the negative ions do not depend predictably on the ionization potentials. This suggests that there may, intriguingly, be an alternative mechanism enhancing double ionization at low intensities.
Resumo:
The triple differential cross sections for ionization of atomic hydrogen by electron impact are analysed in the case of coplanar, asymmetric geometry within the framework of second- order distorted wave theory. Detailed calculations are performed without making any approximations (other than numerical) in the evaluation of the second-order amplitude. The present results are compared with experimental measurements and other theoretical calculations for incident energies of 250, 150 and 54.4 eV. It is found that the second-order calculations represent a marked improvement over the results obtained from first-order theories for impact energies of 150 eV and higher. The close agreement between the present second-order plane wave calculation and those of Byron et al calculated using the closure approximation at an incident energy of 250 eV implies that the closure approximation is valid for this energy. The large difference between the present second-order distorted wave calculations and experiment at an incident energy of 54.4 eV suggests that higher order effects are important for incident energies less than 100 eV.
Resumo:
The transfer ionization process offers a unique opportunity to study radial and angular electron correlations in the helium atom. We report calculations for the multiple differential cross sections of the transfer ionization process p + He --> H + He++ + e(-). The results of these calculations demonstrate the strong sensitivity of the fully differential cross sections to fine details of electron correlation in the target atom. Specifically, angular electron correlation in the ground state of helium results in a broad peak in the electron emission spectra in the backward direction, relative to the incoming beam. Our model explains some of the key effects observed in measurements of multiple differential cross sections using the COLTRIMS technique.
Resumo:
A joint experimental and theoretical study of the transfer ionization process p+He→ H-0+He2++e(-) is presented for 630-keV proton impact energy, where the electron is detected in a plane perpendicular to the proton beam direction. With this choice of kinematics we find the triple-differential cross section to be particularly sensitive to angular correlation in the helium target. There is a good agreement between the experimental data and theoretical calculations.
Resumo:
The triple-differential cross section for ionization of a heavy atom is shown to depend on the spin of the incident electron even if this is polarized entirely parallel or antiparallel to its direction of propagation, the atom is unpolarized, and the spins of the ejected electrons are not resolved. Quantitative predictions for the spin asymmetry are presented in a relativistic distorted-wave Born approximation. Simple physical models are introduced to understand both these results and further symmetry properties involving the reversal of a spatial momentum component also.
Resumo:
A systematic study of the triple differential cross section for the electron impact ionization of magnesium is presented. Complete sets of theoretical results using both the first Born and the distorted wave Bom approximation are given for a range of asymmetric kinematical regimes. How the physical significance of the different approximations enter the character of the cross sections will be explicitly demonstrated. Comparison is made with experiments of the Maryland group and suggestions are made for new experiments.