36 resultados para MC-ICP-MS
Resumo:
A field and market basket study (similar to 1300 samples) of locally grown fruits and vegetables from historically mined regions of southwest (SW) England (Cornwall and Devon), and as reference, a market basket study of similarly locally grown produce from the northeast (NE) of Scotland (Aberdeenshire) was conducted to determine the concentration of total and inorganic arsenic present in produce from these two geogenically different areas of the U.K. On average 98.5% of the total arsenic found was present in the inorganic form. For both the market basket and the field survey, the highest total arsenic was present in open leaf structure produce (i.e., kale, chard, lettuce, greens, and spinach) being most likely to soil/dust contamination of the open leaf structure. The concentration of total arsenic in potatoes, swedes, and carrots was lower in peeled produce compared to unpeeled produce. For baked potatoes, the concentration of total arsenic in the skin was higher compared to the total arsenic concentration of the potato flesh, this difference in localization being confirmed by laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS). For all above ground produce (e.g., apples), peeling did not have a significant effect on the concentration of total arsenic present.
Resumo:
The levels of As and various other trace elements found in the irrigated agricultural soil (Tsoil) of southern Libya were compared with non-irrigated soil (Csoil) from the same sampling campaign collected between April and May 2008. The soil samples represented agronomic practice in the southern Libyan regions of Maknwessa (MAK), Aril (ARL) and Taswaa (TAS), and were analyzed by Inductively coupled plasma mass spectrometry (ICP-MS) for Co, Ni, Cu, Se, Mo, Zn, As, Pb, Cd and P. Concentrations of P and As in TAS and MAK were found to be higher in Tsoil compared to Csoil, while the opposite was true for ARL. In general, As concentrations in these areas were 2-3 times lower than the global average. In ARL, the average P concentrations of the Csoil samples were significantly higher than those of Tsoil samples: this site is composed mainly of pasture for animal production, where phosphate fertilizers are used regularly. Distance from the source of irrigation was found to be of an important influence on the heavy metal concentration of the soil, with greater concentrations found closer to the irrigation source. It can be concluded from the results that irrigation water contains elevated levels of As, which finds its way into the soil profile and can lead to accumulation of As in the soil over time.
Resumo:
Cadmium and lead were determined in fruit and vegetable produce (~1300 samples) collected from a field and market basket study of locally grown produce from the South-West of Britain (Devon and Cornwall). These were compared with similarly locally grown produce from the North-East of Britain (Aberdeenshire). The concentrations of cadmium and lead in the market basket produce were compared to the maximum levels (ML) set by the European Union (EU). For cadmium 0.2% of the samples exceeded the ML, and 0.6% of the samples exceeded the ML for lead. The location of cadmium and lead in potatoes was performed using laser ablation ICP-MS. All tested samples exhibited higher lead concentrations, and most exhibited increased concentrations of cadmium in the potato skin compared to the flesh. The concentrations of cadmium and lead found in fruits and vegetables sampled during this study do not increase concern about risk to human health.
Resumo:
Environmental context Seaweeds hyperaccumulate the toxic metalloid arsenic, but seemingly achieve detoxification by transformation to arsenosugars. The edible seaweed hijiki is a notable exception because it contains high levels of toxic arsenate and arsenite. Terrestrial plants detoxify arsenic by forming arsenitephytochelatin complexes. The hypothesis that seaweeds also synthesise phytochelatins to bind arsenite as a means of detoxification before arsenosugar synthesis is tested in this investigation. Abstract Phytochelatins (PCs), generic structure [-Glu-Cys]n-Gly, are peptides synthesised by terrestrial plants to bind toxic metal(loid)s such as cadmium and arsenic. Seaweeds are arsenic hyperaccumulators, seemingly achieving detoxification via arsenosugar biosynthesis. Whether seaweeds synthesise PCs to aid detoxification during arsenic exposure is unknown. Hizikia fusiforme (hijiki) and Fucus spiralis were used as model seaweeds: the former is known for its large inorganic arsenic concentration, whereas the latter contains mainly arsenosugars. F. spiralis was exposed to 0, 1 and 10mgL -1 arsenate solutions for 24h, whereas hijiki was analysed fresh. All samples contained As III, glutathione and reduced PC 2, identified using HPLC-ICP-MS/ES-MS. Although hijiki contained no As IIIPC complexes, arsenate exposed F. spiralis generated traces of numerous arsenic compounds that might be As IIIGS or As IIIPC 2 complexes. As IIIPC complexes seem not to be a principal storage form for long-term arsenic storage within seaweeds. However, 40 times higher glutathione concentrations were found in hijiki than F. spiralis, which may explain how hijiki deals with its high inorganic arsenic burden. © 2011 CSIRO.
Resumo:
Bone tissue engineering may provide an alternative to autograft, however scaffold optimisation is required to maximize bone ingrowth. In designing scaffolds, pore architecture is important and there is evidence that cells prefer a degree of non-uniformity. The aim of this study was to compare scaffolds derived from a natural porous marine sponge (Spongia agaricina) with unique architecture to those derived from a synthetic polyurethane foam. Hydroxyapatite scaffolds of 1 cm3 were prepared via ceramic infiltration of a marine sponge and a polyurethane (PU) foam. Human foetal osteoblasts (hFOB) were seeded at 1x105 cells/scaffold for up to 14 days. Cytotoxicity, cell number, morphology and differentiation were investigated. PU-derived scaffolds had 84-91% porosity and 99.99% pore interconnectivity. In comparison marine sponge-derived scaffolds had 56-61% porosity and 99.9% pore interconnectivity. hFOB studies showed that a greater number of cells were found on marine sponge-derived scaffolds at than on the PU scaffold but there was no significant difference in cell differentiation. X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS) showed that Si ions were released from the marine-derived scaffold. In summary, three dimensional porous constructs have been manufactured that support cell attachment, proliferation and differentiation but significantly more cells were seen on marine-derived scaffolds. This could be due both to the chemistry and pore architecture of the scaffolds with an additional biological stimulus from presence of Si ions. Further in vivo tests in orthotopic models are required but this marine-derived scaffold shows promise for applications in bone tissue engineering.
Resumo:
This study investigated total arsenic and arsenic speciation in rice using ion chromatography with mass spectrometric detection (IC-ICP-MS), covering the main rice-growing regions of the Iberian Peninsula in Europe. The main arsenic species found were inorganic and dimethylarsinic acid. Samples surveyed were soil, shoots and field-collected rice grain. From this information soil to plant arsenic transfer was investigated plus the distribution of arsenic in rice across the geographical regions of Spain and Portugal. Commercial polished rice was also obtained from each region and tested for arsenic speciation, showing a positive correlation with field-obtained rice grain. Commercial polished rice had the lowest i-As content in Andalucia, Murcia and Valencia while Extremadura had the highest concentrations. About 26% of commercial rice samples exceeded the permissible concentration for infant food production as governed by the European Commission. Some cadmium data is also presented, available with ICP-MS analyses, and show low concentration in rice samples.